Hepatitis C

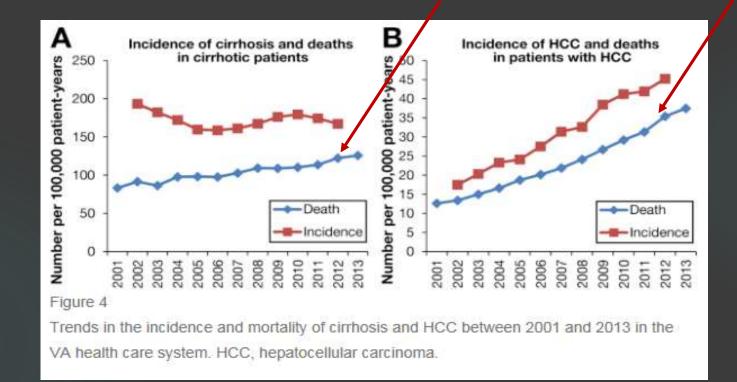
UPDATE 2023 – WHERE ARE WE NOW

ALEXANDER T. LALOS MD FACG ASSISTANT PROFESSOR OF MEDICINE RUTGERS/ROBERT WOOD JOHNSON MEDICAL SCHOOL

Hepatitis C 2023

Hepatitis C 2023

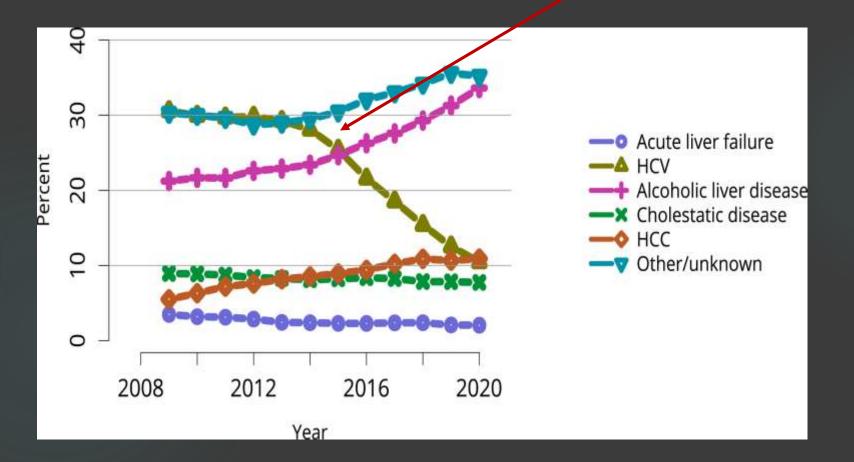
Background
Treatment review
Special cases
Future considerations


HCV facts

- ► 2.4 million people with viremia in the USA
- ► Risk factors
 - > PWID are at greatest risk (intranasal, IV)
 - > MSM (8%)
 - > Unknown (homelessness)
 - > Perinatal transmission (2%-15%)
 - > Organ transplant from HCV antibody (+) donor (80-95%)
 - Blood and blood products extremely rare as cause since 1992
- Reinfection is possible and common

<u>Goal now is to identify cases and link to care –not "make better drugs"</u>

Medical School


Sequelae of HCV infection prior to DAA era


Beste LA et al. Trends in burden of cirrhosis and hepatocellular carcinoma by underlying liver disease in US veterans, 2001-2013. Gastroenterology. 2015;149(6):1471–82

Effect of HCV SVR on liver transplant rates

SRTR, 2020

Effect of HCV SVR on mortality

 Table 2. Clinical Events According to Treatment Response

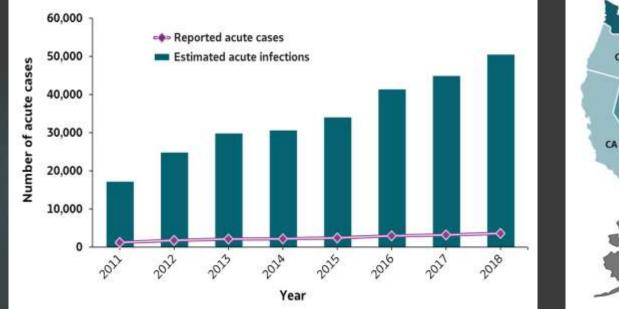
		With SVR					
Outcomes	Events, No.	Observation Period, Person-Years	Rate per 100 Person-Years (95% Cl)	Events, No.	Observation Period, Person-Years	Rate per 100 Person-Years (95% Cl)	P Value ^b
Any event ^a	18	1260	1.43 (0.77-2.09)	169	2921	5.79 (4.91-6.66)	<.001
All-cause mortality	13	1283	1.01 (0.46-1.56)	100	3410	2.93 (2.36-3.51)	<.001
Liver-related mortality or liver transplantation	3	1283	0.23 (<0.01-0.50)	103	3120	3.20 (2.58-3.82)	<.001
Hepatocellular carcinoma	7	1270	0.55 (0.14-0.96)	76	3222	2.63 (1.83-2.89)	<.001
Liver failure	4	1271	0.31 (<0.01-0.62)	111	3066	3.62 (2.95-4.29)	<.001

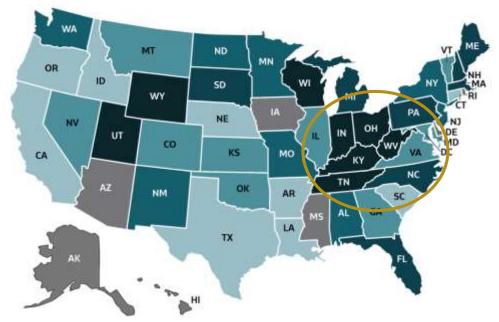
Abbreviation: SVR, sustained virological response.

^aAny event is the composite of all analyzed outcomes, to which only the first event contributed in case of multiple events in an individual patient.

^bP value is based on unadjusted Cox proportional hazards regression analyses, including SVR as a time-dependent covariate.

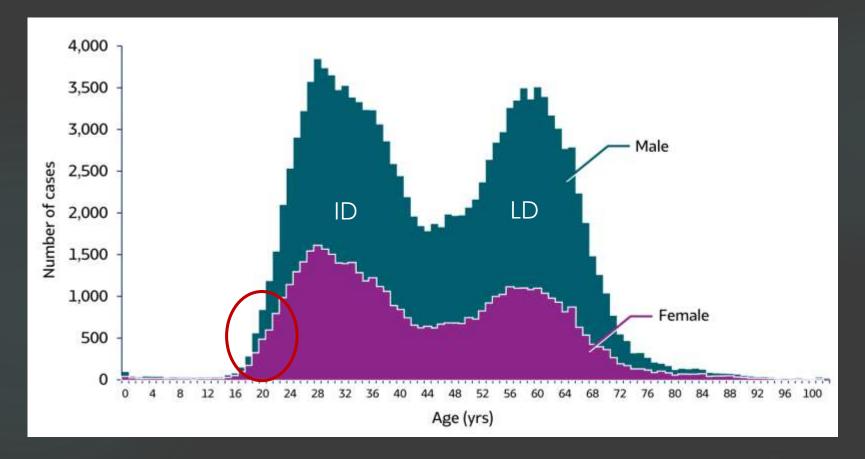
Van der Meer et al, JAMA, 2012





Why can't we vanquish Hepatitis C?

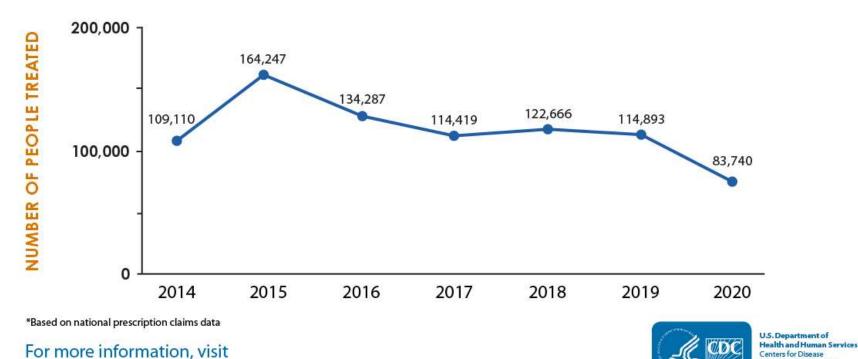
Acute Hepatitis C is increasing in the US



CDC,2019

New infections are the biggest impediment to the WHO goal of HCV eradication by 2030

New diagnosis of Hepatitis C in the US



CDC,2019

Robert Wood Johnson Medical School

THE NUMBER OF PEOPLE WHO INITIATED* HEPATITIS C TREATMENT IN THE U.S. DECLINED FROM 2015 TO 2020

COVID-19-related disruptions to hepatitis C testing and treatment likely contributed to the decline in 2020

cdc.gov/nchhstp/newsroom

RUTGERS Robert Wood Johnson Medical School

Control and Prevention

Identify infected patients: Screening for HCV infection

Recommendations for One-Time Hepatitis C Testing

RECOMMENDED

One-time, routine, opt out HCV testing is recommended for all individuals aged 18 years or older.

One-time HCV testing should be performed for all persons less than 18 years old with activities, exposures, or conditions or circumstances associated with an increased risk of HCV infection (see below).

Prenatal HCV testing as part of routine prenatal care is recommended with each pregnancy.

Periodic repeat HCV testing should be offered to all persons with activities, exposures, or conditions or circumstances associated with an increased risk of HCV exposure (see below).

Annual HCV testing is recommended for all persons who inject drugs, for HIV-infected men who have unprotected sex with men, and men who have sex with men taking pre-exposure prophylaxis (PrEP).

www.hcvguidelines.org

Facilitate care for HCV

- PCP and public education
- ► EMR pop up screening
- ► OB/GYN screening at pregnancy
- Screening at federally qualified health clinics
- ► ED screening
- "Reflex" lab testing
- ► Fibrosure instead of fibroscan (one visit)?
- Virtual OV
- Pre-auth issues addressed

Labs needed for HCV treatment

<u>Definite</u>

- ► HCV VL
- ► HCV genotype
- ► CBC
- ► CMP
- ► Hepatitis B core antibody total
- ► Fibrosis assessement
 - ► HCV fibrosure
 - Elastography
 - ▶ imaging

<u>Should order</u>

- ► HIV antibody
- ► Hepatitis B surface antigen
- ► Hep A antibody total
- ► Hep B surface antibody
- ► US
- ► AFP

Hepatitis C treatment – 3 drug targets

► "asvir" – <u>ns5a inhibitor</u>

Non-enzymatic replication inhibitor

"previr" – protease inhibitor

- cleaves the HCV polyprotein
- > Potent
- > Low barrier to resistance

▶ "buvir" – <u>ns5b inhibitor</u>

- > which truncates RNA polymerization
- High barrier to resistance

HCV treatment options

MAVYRET

EPCLUSA

Gleca**previr/Pibrentasvir**

- ► 8 weeks
- ▶ 3 pills per day
- ► Hepatic clearance (of PI)
- Contraindicated in Child's B/C cirrhosis or with any history of decompensation
- ► PPI OK
- ▶ Use down to age 3
- Paxlovid incompatible
- ► ESRD OK

Sofos<mark>buvi</mark>r/Velpat<mark>asvi</mark>r

- ▶ 12 weeks
- One pill per day
- ► Renal clearance
- ► OK for decompensated cirrhosis
- ► PPI incompatible
- ► Use down to age 6
- ► OK with Paxlovid
- ► ESRD OK

Glecaprevir/Pibrentasvir efficacy

Table 13. ENDURANCE-1: Efficacy in Treatment-Naïve and PRS Treatment-Experienced	l
Adults with HCV Genotype 1 Infection without Cirrhosis	

-2/314	MAVYRET 8 Weeks GT1 N=351
SVR12	99% (348/351)
Outcome for Subjects without SVR12	
On-treatment VF	<1% (1/351)
Relapse	0/349
Other*	<1% (2/351)

	MAVYRET 8 Weeks (N=343)						
	Total (all GTs) (N=343)	GT1 (N=231)	GT2 (N=26)	GT3 (N=63)	GT4 (N=13)	GT5 (N=1)	GT6 (N=9)
SVR12	98% (335/343)	98% (226/231)	100% (26/26)	95% (60/63)	100% (13/13)	100% (1/1)	100% (9/9)
Outcome for Subjects	without SVR1	2					~
On-treatment VF	0/343	0/231	0/26	0/63	0/13	0/1	0/9
Relapse	<1% (1/336)	0/225	0/26	2% (1/62)	0/13	0/1	0/9
Other*	2% (7/343)	2% (5/231)	0/26	3% (2/63)	0/13	0/1	0/9

Abbvie prescribing information



Sofosbuvir/Ledipasvir efficacy

Table 13	Study ASTRAL-1: Virologic Outcomes by HCV Genotype in
	EPCLUSA-Treated Subjects without Cirrhosis or with Compensated
	Cirrhosis (12 Weeks After Treatment)

		EPCLUSA 12 Weeks (N=624)							
	Total	GT-1							
	(all GTs)	GT-1a	GT-1b	Total	GT-2	GT-4	GT-5	GT-6	
	(N=624)	(N=210)	(N=118)	(N=328)	(N=104)	(N=116)	(N=35)	(N=41)	
SVR12	99%	98%	99%	98%	100%	100%	97%	100%	
	(618/624)	(206/210)	(117/118)	(323/328)	(104/104)	(116/116)	(34/35)	(41/41)	

Gilead prescribing information

Dealing with previous treatment failures

► Why are there DAA treatment failures:

- Noncompliance
 - SVR is high even in non-compliant patients
- HCC
- Decompensation
- Multiple RAS?

Dealing with previous DAA treatment failures

Original regimen	Retreatment I	Retreatment II
Glecaprevir/pibrentasvir	Sof/vel/vox*	G/P 16 weeks with ribavirin
Sofosbuvir based	Sof/vel /vox* - with ribavirin for G3/cirrhosis	G/P 16 weeks but not G3 or PI experienced patient

* Sofosbuvir/velpatasvir/voxilaprevir (Vosevi)

Acute Hepatitis C

- ▶ Up to 40% spontaneously clear
- ► <u>ALF extremely rare</u>
- Do not wait for clearance to treat same regimens as for chronic HCV – same SVR rates *
- Drug treatment, harm reduction, reinfection education in the right setting*
- ► No role for exposure prophylaxis*

* www.hcvguidelines.org

HBV and HCV coinfection

- ► Hepatitis B coinfection present in 1.4 percent of US HCV patients *
- ► HCV and HBV replication is reciprocal –HCV typically dominates
 - replication "interference"
 - HCV activation of innate immune response which ebbs with eradication
- > Hepatitis C eradication can lead to Hepatitis B reactivation
 - Defined by HBV DNA turning (+) from (-) or one log increase in HBV DNA
 - 1/200 HBV surface antigen (-) and core AB (+)
 - 21% reactivation in HBV surface antigen (+) **

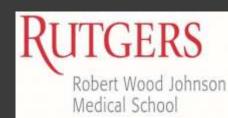
* Kruse et al, Hepatology, 2014** Jiang et al, World J Gastroenterol, 2018

Treatment recommendations in HCV/HBV coinfection

- Check HBV surface antigen, HBV core AB <u>total</u>, Hep B surface antibody and (?) HBV DNA prior to treatment
- ► No prophylactic NUC for resolved HBV infection
- Consider prophylactic NUC (entecavir/TAF) if HBV surface antigen (+)
- Start NUC tx for HBV DNA (+)
- Measure LFTS and HBV DNA before, during, and after treatment on a regular basis (?monthly)


Kanwal et al, Gastroenterololgy, 2017

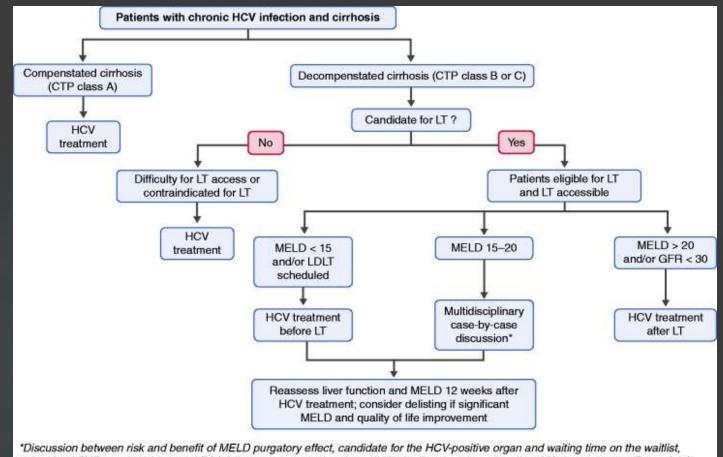
Risk factors for HCC after SVR


Cirrhosis (FIB-4 >3.25, kPa >12.5) at baseline

- Male
- Age
- Liver steatosis (NAFLD, ETOH)
- Portal hypertension
- ?lack of regression of kPa after SVR
- Persistent elevation of AFP after SVR
- HBV core antibody (+)

Follow up of HCV patients with SVR and advanced fibrosis/cirrhosis

- ► HCC surveillance
- ► Stay thin
- ► No ETOH
- Drink coffee
- Quit smoking
- ► Take statins
- ► Reinfection warning
- Vaccination for Hep A/B if appropriate



Decompensated cirrhosis

- ▶ SVR rates are lower (85%)
- ► SVR improves status by:
 - QOL
 - Mortality
 - Portal hypertension
 - MELD
 - Avoid MELD "purgatory" in OLT candidate
- Treatment is sofosbuvir for 12 weeks with ribavirin or 24 weeks no ribavirin

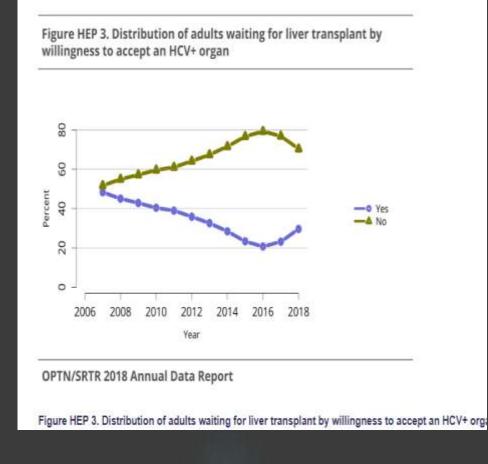
Decompensated HCV cirrhosis -?antiviral therapy

suboptimal SVR rate (e.g. history of DAA failure, genotype 3), and possibility for liver function or quality of life improvement (Data of risk and benefit refer to Table 4).

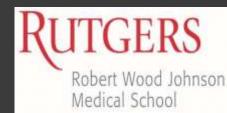
Reproductive issues in the HCV patient

- ► HCV patients encouraged to seek treatment prior to conception
- Not clear HCV affects pregnancy

► ICP?


- ► HCV treatment during pregnancy discouraged(?)
- 10% of patients have spontaneously viremia after delivery VL should be rechecked prior to treatment
- Breast feeding is not contraindicated
- Ethinyl estradiol containing OCP are discouraged with G/P due to risk of increased liver enzymes

HCV negative patients receiving HCV positive livers


- Treatment success is high
- Treatment should be guaranteed before liver transplant
- 12 week regimens of G/P and S/V suggested
- Treatment within two weeks of transplant
- Sofosbuvir/valpatasvir/voxileprevir (Vosevi) can be safely used to salvage DAA failure*

*Higley et al , World J Hep, 2020

Hepatitis C vaccine

- ► T cell and humoral components needed for clearance
- ► HCV is genetically highly diverse
 - Eight genotypes differing by 30% in nucleotide sequence
 - 90 subtypes with 15% sequence variation. HCV adept at avoiding host immune responses
- HCV envelope proteins (E1 and E2) are the targets of the humoral immune response
 - hypervariable region of E2 "shields" more conserved epitopes in the protein

Hepatitis C vaccine

Randomized Trial of a Vaccine Regimen to Prevent Chronic HCV Infection

Kimberly Page, Ph.D., M.P.H., Michael T. Melia, M.D., Rebecca T. Veenhuis, Ph.D., Matthew Winter, D.D.S., Kimberly E. Rousseau, B.S., Guido Massaccesi, B.S., William O. Osburn, Ph.D., Michael Forman, B.S., Elaine Thomas, M.D., Karla Thornton, M.D., M.P.H., Katherine Wagner, M.I.P.H., Ventzislav Vassilev, Ph.D., et al. NEJM, 2021

adenovirus 3 (ChAd3) and modified vaccinia Ankara (MVA) vectors encoding NS proteins of HCV genotype 1b

Analysis and Population†	Vaccine (N = 275)		Placebo (N=273)		Vaccine Efficacy (95% CI)‡	Hazard Ratio (95% CI)§	P Value¶
	Censored Data	Chronic Infection	Censored Data	Chronic Infection			
		number of	participants	_	percent		
Primary efficacy analysis, per-protocol population	261	14	259	14	-53 (-255 to 34)	1.53 (0.66–3.55)	0.31
Secondary efficacy analysis, modified intention-to-treat population	256	19	257	17	-66 (-250 to 21)	1.66 (0.79–3.50)	0.18

RNA T cell response

Robert Wood Johnson Medical School

UTGERS