

Chronic Hepatitis E and Others

Mumtaz Niazi, MD

Disclosure

None

Case presentation

35-year-old Nigerian man with a history of chronic HBV (inactive carrier), not on any antiviral therapy, have been admitted for new onset jaundice and generalized malaise. He had recent travel to Africa in last 1 month and had gastroenteritis during his travel to Africa treated with Pepto-Bismol. No history of new medication use

On Exam: He has scleral icterus. Otherwise unremarkable exam

Diagnostic work-up:

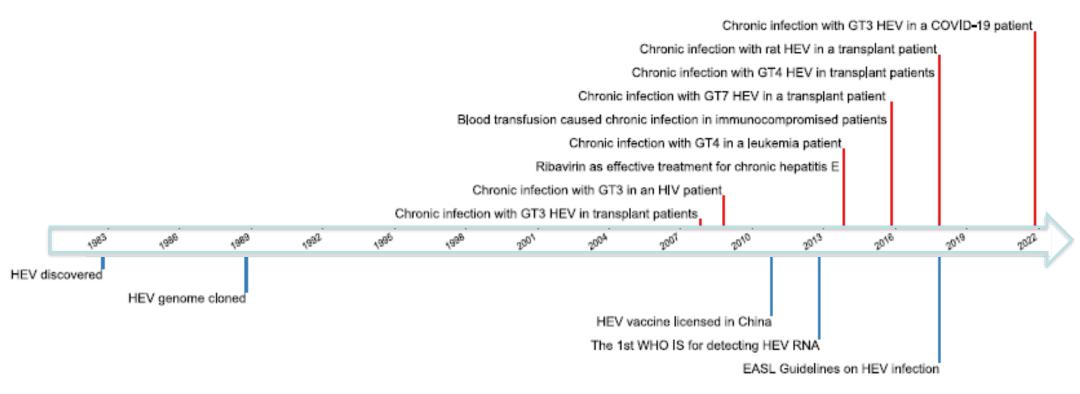
US liver with doppler: Normal examination.

Tbili	6.4
AST	892
ALT	1620
ALP	137
INR	1.0
HBV DNA	21 IU/mL
HCV RNA	Not detected
HEV IGG/IGM	Positive
HDV IGM/IGG	Negative
Hep A IGM/IGG	Negative
ANA/ASMA/IGG	WNL

Which of the following statement is true ?

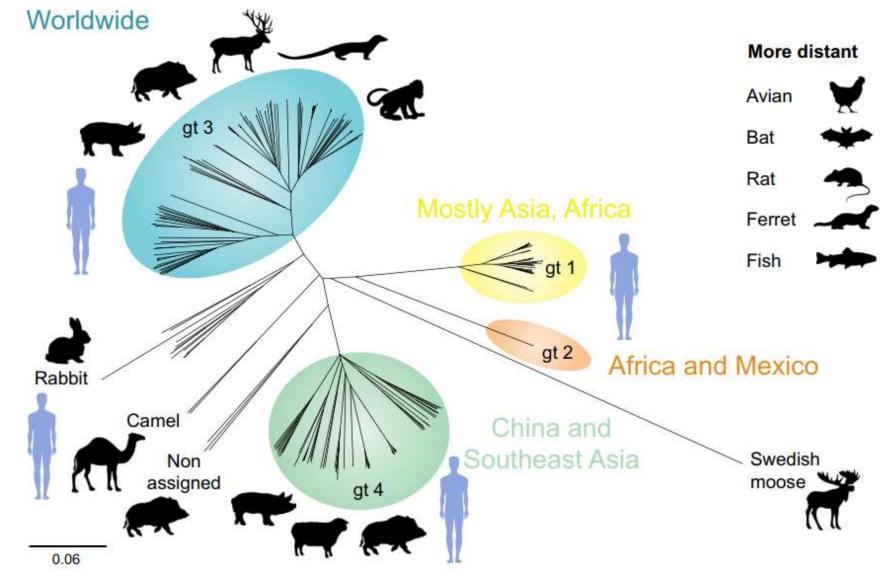
- a. Most likely cause of acute hepatitis is HBV flare
- b. Most likely cause of acute hepatitis is HDV infection
- c. Most likely cause of acute hepatitis is Hep A infection
- d. Most likely cause of acute hepatitis is HEV infection

- Acute infection
- Chronic infection
- Extrahepatic manifestations
- Diagnosis
- Treatment

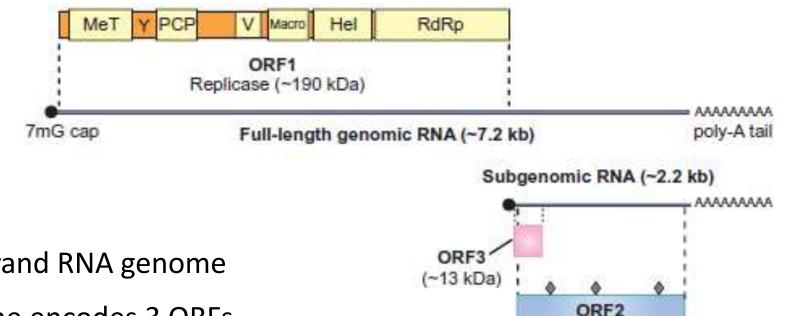


Epidemiology

- HEV was thought to be limited to certain developing countries BUT
 - HEV is endemic
 - Largely a zoonotic infection
 - Leading cause of acute viral hepatitis in developing countries
- > WHO, estimates 20 million HEV infections/year worldwide
 - 3.3 million symptomatic cases of HEV
 - 44 000 deaths in 2015


A brief timeline of major developments in the field of HEV

RUTGERS

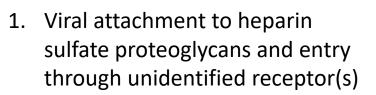

Phylogenetic relationship of hepeviruses

RUTGERS

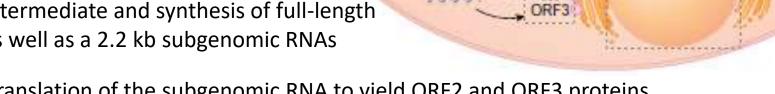
The advancement in sequencing technology allowed the identification of novel HEV related viruses in variety of animals
Debing Y, et al. J Hepatol 2016;65:200–12

Virology ~ Genetic organization of the HEV

- Positive single-strand RNA genome
- The 7.2 kb genome encodes 3 ORFs
 - ORF1 encodes a polyprotein, required for RNA replication
 - ORF2 encodes the capsid protein
 - ORF3 protein involve in releasing new virions
- Two viral RNA species are generated during HEV genome replication
 - The full-length RNA of 7.2 Kb and a subgenomic RNA 2.2 kb


*Open reading frames (ORFs) *kb: kilo base *kDa: kilodalton

RUTGERS


Capsid (~72 kDa)

RUTGERS

Virology ~ A life cycle of HEV

- Clathrin mediated endocytosis 2.
- 3. Release of the viral positive-strand RNA genome into the cytosol
- Translation to yield the ORF1 protein 4.
- Replication through a negative-strand RNA 5. intermediate and synthesis of full-length as well as a 2.2 kb subgenomic RNAs

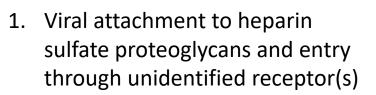
Icosahedral virus

2

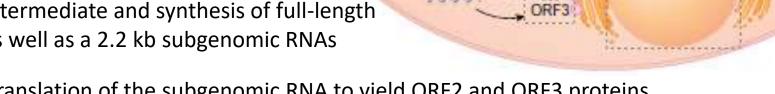
27 – 34 nm in diameter

1

Non-enveloped virion


- Translation of the subgenomic RNA to yield ORF2 and ORF3 proteins 6.
- Packaging, assembly and release of newly formed virus. 7.

Quasi-enveloped virions


Non-enveloped virion

RUTGERS

Virology ~ A life cycle of HEV

- Clathrin mediated endocytosis 2.
- 3. Release of the viral positive-strand RNA genome into the cytosol
- Translation to yield the ORF1 protein 4.
- Replication through a negative-strand RNA 5. intermediate and synthesis of full-length as well as a 2.2 kb subgenomic RNAs

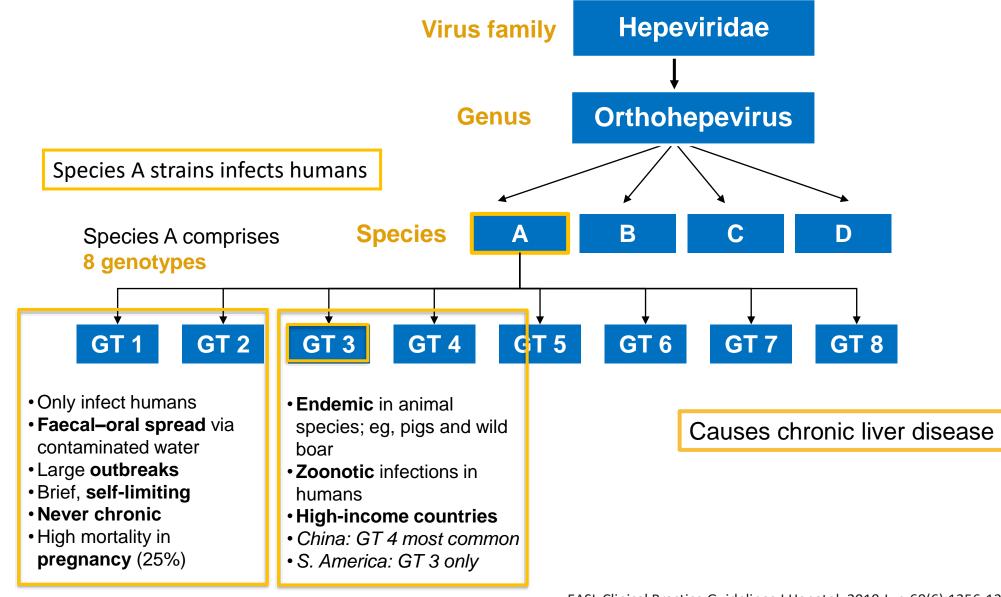
Icosahedral virus

2

27 – 34 nm in diameter

1

Non-enveloped virion


- Translation of the subgenomic RNA to yield ORF2 and ORF3 proteins 6.
- Packaging, assembly and release of newly formed virus. 7.

Quasi-enveloped virions

Non-enveloped virion

Rutgers

Virology of HEV

EASL Clinical Practice Guidelines J Hepatol. 2018 Jun;68(6):1256-1271 https://www.cdc.gov/hepatitis/hev/hevfaq.htm#section1

- ~20 million infections worldwide
 - 3 million symptomatic cases and 70,000 deaths/year*
 - Geographic location
 - GT-1: Africa and Asia
 - GT-2: Mexico and West Africa
- > Brief, self-limiting, usually in young adults
- > Never chronic
 - Acute-on-chronic liver failure possible
- High mortality in pregnancy (25%)

Travellers with hepatitis returning from areas endemic for HEV GT 1 or 2 should be tested for HEV

HEV Genotype 3 and 4

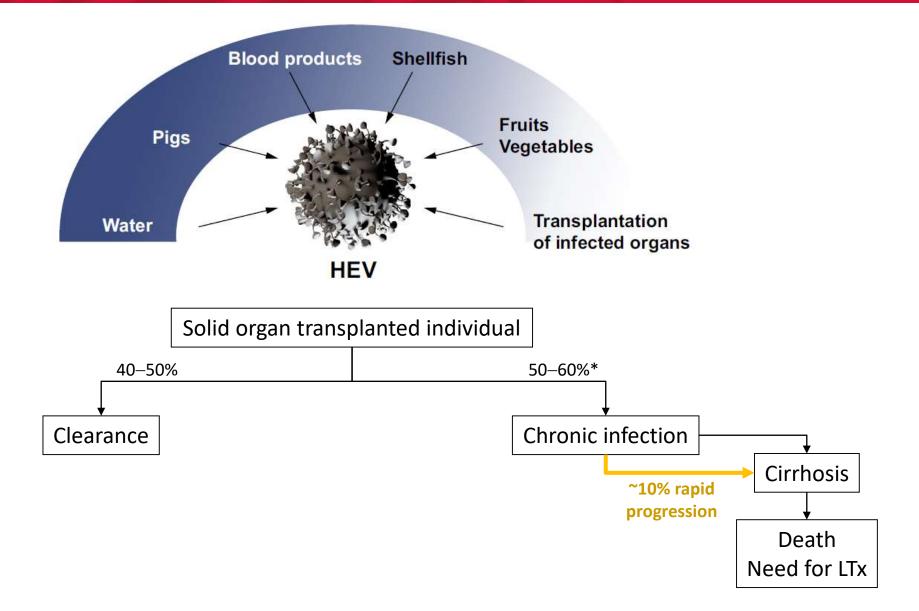
- Endemic in some developing countries, as well as most high-income countries
- Geographic Location
 - GT-3: Developed Countries
 - GT-4: China, Taiwan, Japan
- Transmission route
 - Food borne
- Most common cause of acute viral hepatitis in many European countries
- ➢ Estimated that ≥2 million locally acquired HEV infections/year
 - Most as a result of zoonotic infection
 - Primary hosts are pigs
- HEV GT 3 and 4 tend to affect older males
 - In one study, M:F ratio was 3:1; median age, 63 years¹

> Acute HEV GT 3 infection is clinically silent in most patients

- <5% may develop symptoms of acute hepatitis</p>
 - Elevated liver enzymes, jaundice and non-specific symptoms

Immunocompetent patients clear the infection spontaneously

- Progression to ALF is rare with HEV GT 3
- ACLF occurs occasionally


> Non-sterilizing immunity develops after infection has cleared

 Re-infection possible, but with lower risk of symptomatic hepatitis

- Definition: Persistence of HEV replication for 6 months
- Immunosuppressed patients may fail to clear HEV infection
 - Progression to chronic hepatitis
 - Only with GT 3 &4 infection
- Solid organ transplant recipients
 - ~50–66% of HEV-infected organ transplant recipients develop chronic hepatitis
- Most patients are asymptomatic and present with mild and persistent LFT abnormalities

Disease progression in transplanted individuals

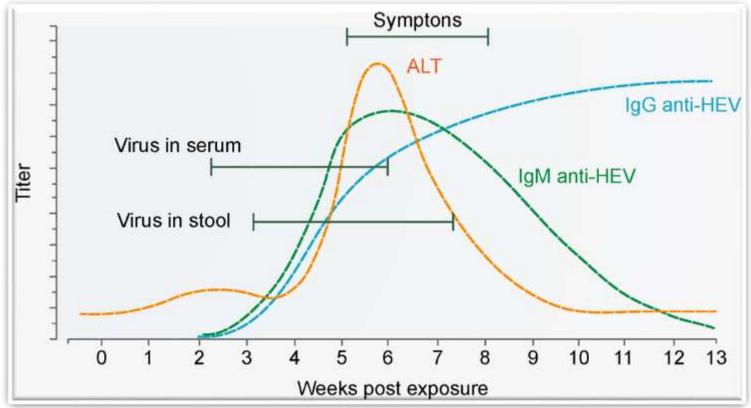
*Possible increased likelihood for LTx recipients, only GT 3

Rutgers

Behrendt P, et al. J Hepatol 2014;61:1418–29 EASL Clinical Practice Guidelines J Hepatol. 2018 Jun;68(6):1256-1271

RUTGERS

Extrahepatic manifestations


Organ system	Clinical syndrome	Notes
Neurological	 Neuralgic amyotrophy Guillain–Barré syndrome Meningoencephalitis Mononeuritis multiplex Myositis Bell's palsy, vestibular neuritis, and peripheral neuropathy 	 ~150 cases of neurological injury (in HEV GT 3); mainly Europe HEV GT 1 in Asia Most (>90%) cases in the immunocompetent
Renal	 Membranoproliferative and membranous glomerulonephritis IgA nephropathy 	 Mainly immunosuppressed GT 3-infected patients Renal function improves and proteinuria levels decrease following HEV clearance
Haematological	 Cryoglobulinaemia Thrombocytopenia Monoclonal immunoglobulin Aplastic anaemia Haemolytic anaemia 	 Occurs mainly in association with renal disease Mild thrombocytopenia is common; rarely severe Reported in 25% of cases of acute HEV in UK study
Other	 Acute pancreatitis Arthritis Myocarditis Autoimmune thyroiditis 	55 cases worldwide. HEV GT 1 only; usually mild EASL Clinical Practice Guidelines L Hepatol. 2018 Jun:68(6):1256-1271

EASL Clinical Practice Guidelines J Hepatol. 2018 Jun;68(6):1256-1271

RUTGERS

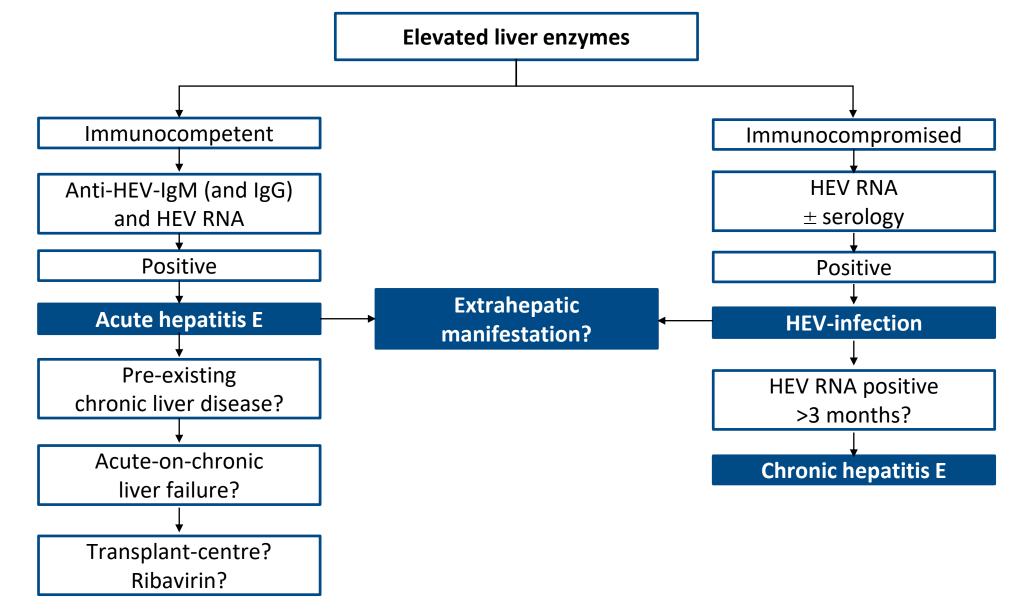
Laboratory diagnosis of HEV infection

- Incubation period for HEV is ~15–60 days
- HEV RNA is detected ~3 weeks post-infection in blood and stool
 - Shortly before onset of symptoms
- Biochemical markers are elevated at the onset of symptoms
 - HEV IgM followed by HEV IgG

Rutgers

Laboratory diagnosis of HEV infection

- HEV infection can be diagnosed by detection of anti-HEV antibodies
 - IgM, IgG or both in combination with HEV NAT


Infection status	Positive markers
Current infection – acute	 HEV RNA HEV RNA + anti-HEV IgM
	 HEV RNA + anti-HEV lgG* HEV RNA + anti-HEV lgM + anti-HEV lgG Anti-HEV lgM + anti-HEV lgG (rising) HEV antigen
Current infection – chronic	 HEV RNA (± anti-HEV) ≥3 months HEV antigen
Past infection	 Anti-HEV lgG

Molecular analysis of HEV ~ Role of HEV Viral Load

- Detection of HEV RNA in blood or stool is indicative of HEV infection
- In immunosuppressed patients with chronic HEV, anti-HEV antibodies are often undetectable
 - HEV RNA is the only reliable means of diagnosis
- > In chronic cases, viral load testing should be used
 - To evaluate patient response to treatment
 - To identify relapsing infections

Rutgers

Diagnostic algorithm for HEV infection

Differential diagnosis

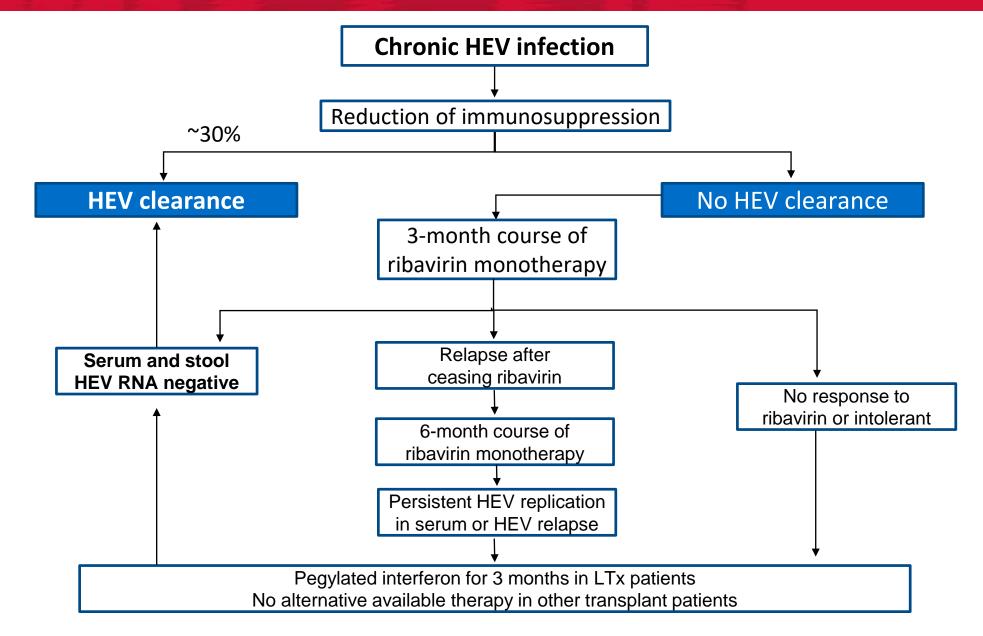
Infection status	Differential diagnosis
Acute infection	 Drug-induced liver injury (DILI) Autoimmune hepatitis (AIH) Seronegative hepatitis EBV hepatitis Acute hepatitis B Acute hepatitis A Acute hepatitis C CMV hepatitis
Chronic infection in immunosuppressed individuals	 Graft rejection Drug-induced liver injury Recurrence of primary liver pathology in LTx recipients Graft vs. host disease Intercurrent infections; e.g. sepsis EBV and CMV reactivation

- Consumption of undercooked meat from pigs, wild boar, and deer is a clear risk factor for HEV infection
 - Immunocompromised individuals and those with chronic liver diseases should avoid consumption of undercooked meat (pork, wild boar) and shellfish

Risk of patient-to-patient transmission is poorly defined

- Sexual transmission has been described in MSM
- Stool contains high amounts of infectious HEV particles
 - Strict hygiene is required

> A vaccine has been developed but is only licensed in China



- HEV can also be transmitted iatrogenically
 - Through infected blood and blood products
- > NAT is screening methodology of choice
- Universal screening for HEV in blood donors:
 - Several countries, Ireland, UK, France, Netherlands, Germany, Spain, Austria and Japan
- In US, screening in under consideration

Treatment of acute HEV infection

- Acute HEV infection does not usually require antiviral therapy
 - Majority of the HEV infection resolves spontaneously
 - Some patients may progress to liver failure
- > Ribavirin
 - Early therapy of acute HEV may shorten course of disease and reduce overall morbidity
 - May be considered in cases of severe acute hepatitis or acute-onchronic liver failure
- Corticosteroids
 - Were used in some case of ALF and retrospectively identified as HEV infection with improved liver function⁽¹⁾
 - Insufficient data to support the corticosteroids for HEV induced ALF

Treatment of HEV infection in Solid Organ Transplant

RUTGERS

Summary

- HEV infection represents an important global public health problem and is a cause of significant morbidity and mortality worldwide
- Travellers with evidence of hepatitis returning from areas endemic for HEV GT 1 or 2 should be tested for HEV
- HEV testing should be considered in patient with neuralgic amyotrophy and Guillain–Barré syndrome
- All immunosuppressed patients with unexplained abnormal LFTs should be tested for HEV infection
- HEV infection can be diagnosed by detection of anti-HEV antibodies (IgM, IgG or both in combination with HEV NAT)
- Decrease immunosuppression at diagnosis of chronic HEV infection in solid organ transplant recipients, if possible
- Ribavirin therapy for 12 weeks in patients with chronic HEV infection

RUTGERS

Unanswered questions

- > Why do only specific HEV genotype causes chronic infections ?
- Does person to person spread occur with HEV GT 3 and 4 ?
- HEV virions can be detected in seminal fluids, can HEV be sexually transmitted ?
- Should transplant recipient living in endemic areas be screened for HEV infection ?
- Should organ donors be screened for HEV ?
- Should blood donation screening for HEV RNA be done universally ?
- > What is optimal dose and duration of Ribavirin therapy ?

THE STATE UNIVERSITY OF NEW JERSEY

~ Thank you