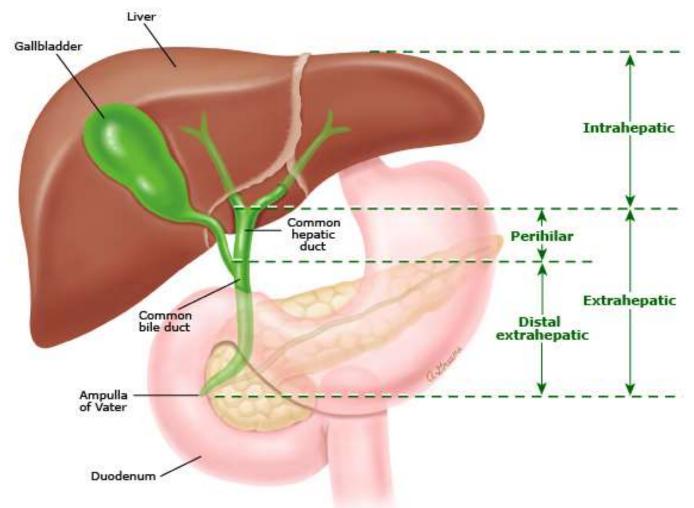

Malignant Biliary Obstruction: Can EUS Replace ERCP?

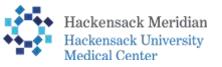

Rosario Ligresti, MD FASGE

Chief, Division of Gastroenterology Associate Professor of Medicine Hackensack University Medical Center

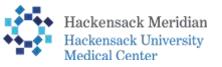
Biliary Obstruction

Biliary Obstruction

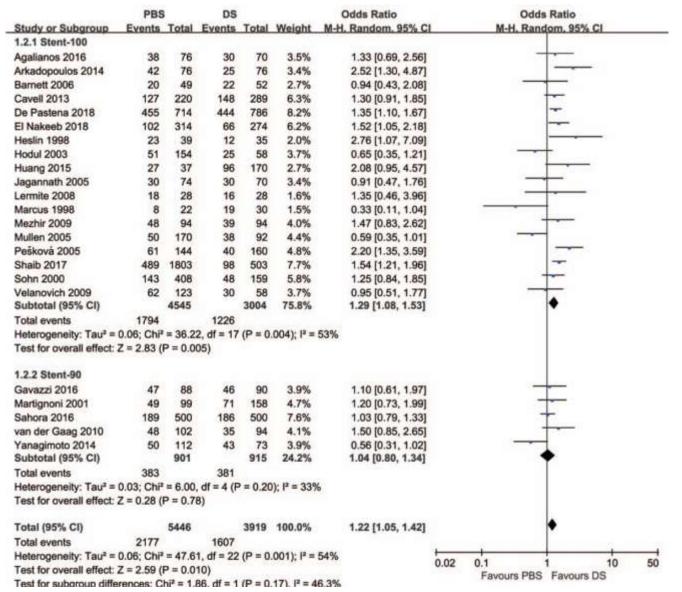
Diagnosis	Patients, n	Percentage of total
Benign pathology		
Common bile duct stones	428	89.2
Chronic pancreatitis	22	4.6
Post-cholecystectomy stricture	17	3.5
Autoimmune pancreatitis	11	2.3
Primary sclerosing cholangitis	2	0.4
Malignant pathology		
Pancreatic ductal adenocarcinoma	200	36.6
Gallbladder cancer	146	26.7
Hilar cholangiocarcinoma	89	16.3
Metastatic disease with biliary obstruction	42	7.7
Distal cholangiocarcinoma	31	5.7
Ampullary adenocarcinoma	31	5.7
Duodenal adenocarcinoma	7	1.3



Garcia G, Wee N, et al. HPB (Oxford) 2011 Jun;13(6):426-30


Malignant Biliary Obstruction

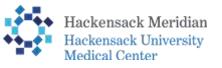
- 60-70% of pancreas cancers occur in the head of the pancreas
 - 70-80% of these present with malignant biliary obstruction
- It is important to fully evaluate these patients to rule out other common causes of liver dysfunction
 - Liver metastases
 - o Other concomitant liver disease
 - O Drug-induced



Malignant Biliary Obstruction

- Many recent studies have demonstrated that if a patient has resectable pancreas cancer, then biliary obstruction should not be relieved preoperatively
- Exceptions include:
 - Cholangitis
 - Markedly elevated total bilirubin
 - Need for neoadjuvant chemotherapy
 - Delayed surgical scheduling

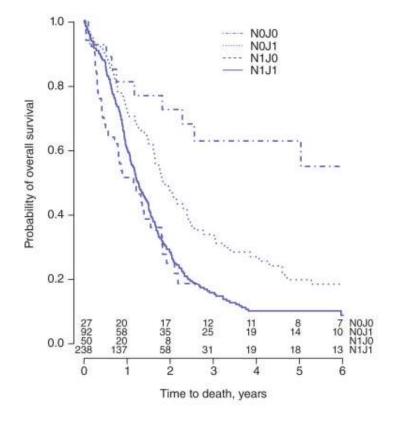
Resectable Malignant Biliary Obstruction


• The overall morbidity rate was significantly higher in the pre-op biliary stent (PBS) group than the direct surgery (DS) group (OR 1.22, 95% CI 1.05–1.42; P = .01)

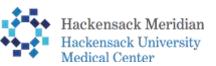
Gong L et al. Medicine 99(42):p e22714, October 16, 2020

Why Is Jaundice So Bad Anyway?

- Complicates further management due to the risk of cholangitis
- Pruritis can be intolerable and compromise quality of life
- Contributes to overall malnutrition
- Significantly affects choice of chemotherapeutic agents
 - Pharmacokinetics of both nab-paclitaxel and gemcitabine are markedly altered
 - Toxicity of both increases
 - Both must have their dosages reduced
- Strongly associated with decreased survival

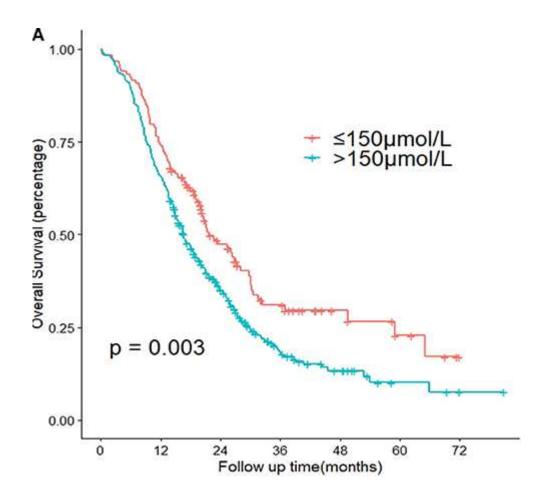


Why Is Jaundice So Bad Anyway?


Multiple studies have shown that jaundice is a negative predictor of survival on univariate and

multivariate analysis

Variables	HR (95% CI)	<i>P</i> -value ^a
Jaundice and node status		
Non-jaundiced, N0	1	
Non-jaundiced, N1	4.92 (2.01–12.05)	<0.001
Jaundiced, N0	3.01 (1.29–7.01)	0.011
Jaundiced, N1	4.02 (1.79–9.27)	0.001


Strasberg S et al. HPB 16 (2) Feb 2014

Why Is Jaundice So Bad Anyway?

 In fact, the higher the bilirubin, the worse the survival

Shen Z et al. Front. Oncol., 16 September 2020

Relief Of Biliary Obstruction Has Been Shown To Dramatically Improve Quality Of Life

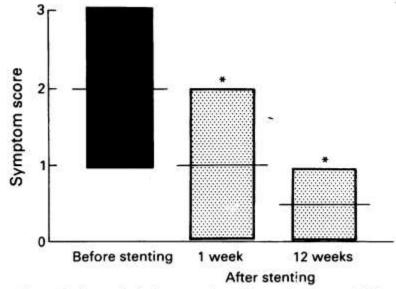
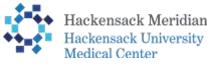



Figure 1: Anorexia before stent insertion and at one and 12 weeks after stenting. Results are expressed as the median and interquartile range. *p<0.01 compared with the score before stenting. There was no significant change between the one week and 12 week assessment.

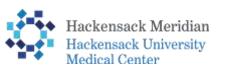
- Significant improvement in
 - o indigestion
 - o anorexia
 - o nausea
 - o pain
 - o mood

Ballinger AB et al. Gut 1994 Apr;35(4):467-70

Methods To Relieve Malignant Biliary Obstruction

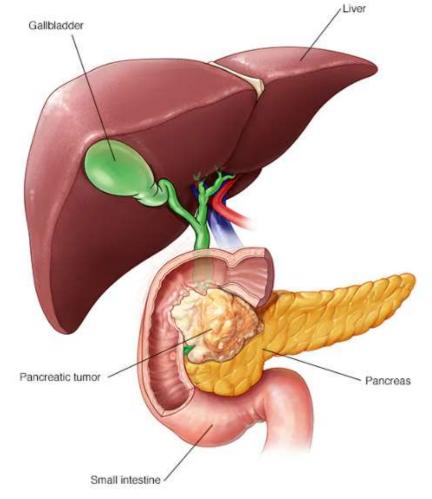
- Percutaneous biliary drainage (PBD)
- ERCP
- EUS-guided ERCP
- EUS-only

Methods To Relieve Malignant Biliary Obstruction


- All are very effective
- Choice of one versus another currently may have much to do with the location of the obstruction and local clinical expertise
- EUS-guided approaches are likely to replace all others in the future

Effectiveness of biliary decompression

		Final drainage		Intention-to-treat			
Parameters	PTBD (n = 107)	ERBD/ENBD (n = 104)	P value	PTBD (n = 68)	ERBD/ENBD (n = 143)	P value	
Initial bilirubin (mg/dL)	12.1 ± 6.7	10.3 ± 7.1	0.068	11.1 ± 6.2	11.2 ± 7.3	0.884	
Final bilirubin (mg/dL)	4.4 ± 3.4	3.0 ± 3.0	0.002	4.0 ± 3.1	3.6 ± 3.4	0.370	
Daily diminution of bilirubin ([mg/dL]/day)	0.7 ± 0.5	0.6 ± 0.4	0.049	0.7 ± 0.5	0.6 ± 0.4	0.041	
Drainage duration (day)	14.2 ± 10.9	16.6 ± 11.5	0.121	13.2 ± 11.5	16.5 ± 11.0	0.049	

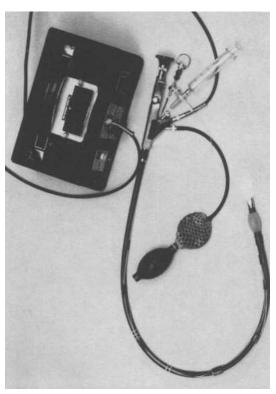

PTBD, percutaneous transhepatic biliary drainage; ERBD, endoscopic retrograde biliary drainage; ENBD, endoscopic naso-biliary drainage.

J Korean Med Sci. 2012 Apr;27(4):356-362.

Malignant Biliary Obstruction (MBO)

ERCP History

- First ERCP performed by William McCune and reported in 1968
- First ERCP series reported by Itaru Oi in 1970 and Peter Cotton in 1972


Endoscopic Cannulation of the Ampulla of Vater:

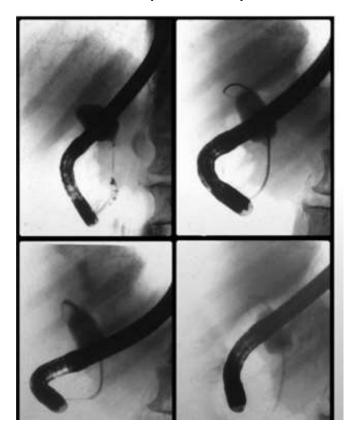
A Preliminary Report

WILLIAM S. McCune, M.D., Paul E. Shorb, M.D., Herbert Moscovitz, M.D.

From the Department of Surgery, The George Washington University School of Medicine, Washington, D. C.

ERCP History

- First endoscopic sphincterotomy reported by Kawai and Classen independently in 1974
- First biliary stent placed by Soehendra in 1979

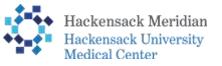

Drsch. med. Wschr. 104 (1979), 206-207 @ Georg Thieme Verlag, Stuttgart

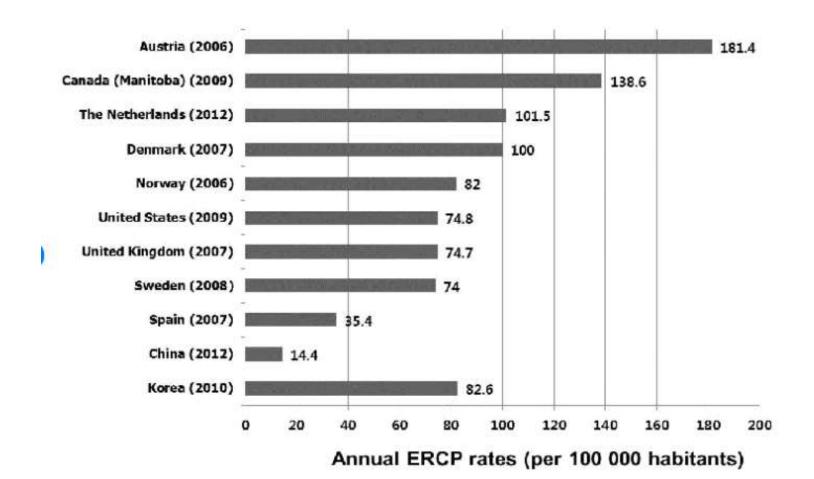
Palliative Gallengangdrainage

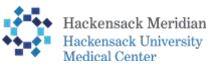
Eine neue Methode zur endoskopischen Einführung eines inneren Drains

N. Soehendra und V. Reynders-Frederix

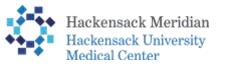
Chirurgische Klinik und Poliklinik, Abteilung für Allgemeinschirurgie (Direktor: Prof. Dr. H. W. Schenber) der Universität Hamburg


ERCP History

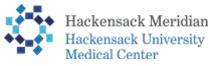

 "I performed many, many ERCPs in the 1970s, but it never occurred to me to take out stones."
 Peter Cotton, 40 Years Of Interventional ERCP-Stories From The Pioneers 2014



- Considered the gold standard for relieving malignant biliary obstruction
- Considered overall to be the riskiest high-volume endoscopic procedure currently performed
 - Complications can be severe or fatal
- ERCP no longer has any role as a diagnostic procedure
 - NIH Consensus Conference January 2002
 - Replaced by CT, MRI and EUS
- Volume is increasing throughout the world



▶ Table 2 Use of ERCP from 2007 to 2016.

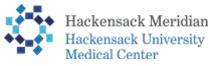

	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Total	148,179	162,609	162,419	167,943	170,931	161,685	160,714	160,100	155,695	156,874
Percentage	0.38%	0.41%	0.41%	0.43%	0.44%	0.44%	0.45%	0.45%	0.43%	0.44%

Temporal trend in use of ERCP from 2007 to 2016. The total number of patients is shown, as well as the respective percentage relative to the total number of discharges each year.

Kroner PT et al. Endoscopy International Open 2020; 08: E761– E769

- Pancreatitis is the most common complication of ERCP (3.5-13%)
- In 90% of pancreatitis cases, severity is mild to moderate
- Infections occur in 1.4%
 - Cholangitis
 - Cholecystitis
- Bleeding complications occur in 1.3%
- Perforation occurs in 0.6%
- Procedure-related mortality is 0.3%

► Table 5 Occurrence of Post-ERCP pancreatitis from 2007 to 2016.

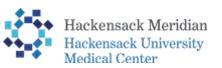

Year	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	Total
Total (per- centage)								21,590 (13.5%)			

Adjusted 1.49 odds ratio (95% CI), P value

1.49 (1.39-1.60), < 0.01

Occurrence of post-ERCP pancreatitis in number and percentage of cases during the period from 2007 to 2016 as well as adjusted odds ratio, confidence interval and P value for 2016 versus 2007.

Kroner PT et al. Endoscopy International Open 2020; 08: E761– E769



How Often Is ERCP Performed For MBO?

► Table 3 Most common ERCP indications in 2016 compared to 2007.

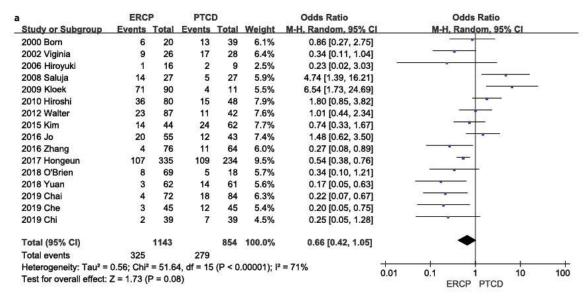
Indication	2007	2016	Percent change
Choledocholithiasis (N = 499,339)	40.4%	30.2%	-10.2%
Acute biliary pancreatitis (N = 175,476)	13.9%	8.8%	-5.1%
Ascending cholangitis (N = 79,607)	4.1%	10.8%	+6.7%
Unspecified obstruction (N = 51,902)	5.8%	7.8%	+2.0%
Pancreatic head mass (N = 37,223)	2.5%	2.9%	+0.4%
Non-codable indication (N = 495,810)	33.3%	39.5%	+6.2%

Kroner PT et al. Endoscopy International Open 2020; 08: E761-E769



Is ERCP Effective For MBO? Is It Comparable To PBD?

Overall ERCP success rate was 85% vs. 83% for PBD


	ERC	Р	PTC	D		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
2000 Born	16	20	32	39	3.1%	0.97 [0.75, 1.27]	-
2002 Viginia	15	26	21	28	1.6%	0.77 [0.52, 1.14]	
2006 Hiroyuki	12	16	6	9	0.9%	1.13 [0.65, 1.93]	10 000 11
2008 Saluja	22	27	25	27	4.4%	0.88 [0.71, 1.08]	
2009 Kloek	73	90	11	11	6.4%	0.84 [0.72, 0.98]	**************************************
2010 Hiroshi	64	80	38	48	5.3%	1.01 [0.84, 1.21]	- -
2012 Walter	67	87	18	42	1.7%	1.80 [1.24, 2.60]	S 3
2015 Kim	25	44	36	62	2.1%	0.98 [0.70, 1.37]	
2016 Jo	51	55	42	43	10.6%	0.95 [0.87, 1.04]	-
2016 Zhang	70	76	60	64	10.3%	0.98 [0.90, 1.08]	+
2017 Hongeun	275	335	207	234	12.0%	0.93 [0.87, 0.99]	•
2018 O'Brien	65	69	16	18	5.6%	1.06 [0.89, 1.26]	-
2018 Yuan	59	62	51	61	8.1%	1.14 [1.00, 1.29]	
2019 Chai	66	72	80	84	10.8%	0.96 [0.88, 1.05]	
2019 Che	42	45	38	45	6.8%	1.11 [0.95, 1.28]	- 3 - 2 8
2019 Chi	37	39	38	39	10.5%	0.97 [0.89, 1.06]	+
Total (95% CI)		1143		854	100.0%	0.99 [0.94, 1.04]	•
Total events	959		719			A	NO. 1000
Heterogeneity: Tau ² =	0.00; Chi ²	= 30.6	4, df = 15	(P = 0	.010); l2 =	51%	
Test for overall effect:					00000 5 0000000000000000000000000000000		0.5 0.7 1 1.5 2 ERCP PTCD

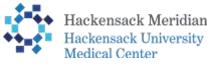
Pang L et al. Digestion Jan 2023

Is ERCP Effective For MBO? Is It Comparable To PBD?

There were no significant differences between the two in total hospital stay or complication rates

•	E	RCP		P	TCD			Mean Difference		Mea	n Differer	ice	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV. Random, 95% CI	0	IV, R	andom, 9	5% CI	
2000 Born	4.5	3	20	6	4	39	12.9%	-1.50 [-3.32, 0.32]					
2002 Viginia	4.8	3.7	26	2	0.8	28	15.4%	2.80 [1.35, 4.25]			100	w-	
2008 Saluja	2	0.6	27	2	0.3	27	23.2%	0.00 [-0.25, 0.25]			*		
2015 Kim	21	11	44	19	10	62	4.5%	2.00 [-2.09, 6.09]			-		
2016 Jo	23.5	9.5	55	26	12	43	4.0%	-2.50 [-6.88, 1.88]					
2019 Chai	11	1.2	72	11.2	1.2	84	22.7%	-0.20 [-0.58, 0.18]			*		
2019 Che	11	3.1	45	7.4	2.7	45	17.3%	3.60 [2.40, 4.80]				•	
Total (95% CI)			289			328	100.0%	0.80 [-0.16, 1.77]			•		
Heterogeneity: Tau ² =	1.04; Ch	ni² = {	54.03, 0	df = 6 (F	< 0.	00001)	; I ² = 89%		-				+
Test for overall effect:				ya 20-00 4 3 4 6 9 1.		arrana (Fizik			-10	-5 FF	O RCP PTC	D 5	10

Pang L et al. Digestion Jan 2023


How About MBO Due To Perihilar Cholangiocarcinoma?

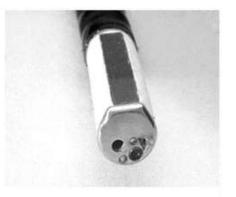
- There was no statistical difference between the groups regarding: technical success, post-drainage bleeding,
 major post-drainage complications, and seeding metastases
- Percutaneous drainage had longer hospital stay but decreased rates of cholangitis

Clinical success in palliative PCCA

	EBD	EBD PTBD				Risk Difference	Risk Difference
Study or Subgroup	Events	Events Total		otal Events Total		M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Lee SH 2007	27	34	95	100	24.0%	-0.16 [-0.30, -0.01]	
Liang X 2021	50	95	31	46	29.3%	-0.15 [-0.32, 0.02]	
PaikWH 2008	34	44	38	41	20.0%	-0.15 [-0.30, -0.01]	-
Walter T 2012	43	87	33	42	26.7%	-0.29 [-0.45, -0.13]	,
Total (95% CI)		260		229	100.0%	-0.19 [-0.27, -0.11]	•
Total events	154		197				
Heterogeneity: Chi2=	2.18, df=	3 (P=	0.54); [2:	= 0%			1 15 1 15
Test for overall effect							-1 -0.5 0 0.5 Favours [PTBD] Favours [EBD]

Moll CF et al. Clinics 78; 2023

EUS



EUS History

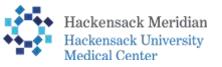
- First report of a ultrasonic endoscope was in 1980 by Eugene DiMagno from Mayo Clinic
- With it, mediastinal structures, liver and porta hepatis were readily imaged at 10 MHz

Methods and Devices

ULTRASONIC ENDOSCOPE

PATRICK T. REGAN
DAVID A. WILSON

JAMES L. BUXTON ROBERT R. HATTERY JOSE R. SUAREZ


PHILLIP S. GREEN

Gastroenterology Unit and Department of Radiology, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55901; and Bioengineering Research Center, SRI International, Menlo Park, California 94025

EUS History

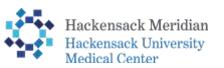
- Olympus marketed the first commercial echoendoscope in 1982
- Tio and Tytgat utilized the biopsy channel to complete the first EUS-guided biopsy in 1984
- For most of the 1980s, essentially only three physicians were performing diagnostic EUS in the world
 - Charles Lightdale in New York
 - Lok Tio in Amsterdam
 - O Thomas Rosch in Munich

EUS History

- In 1988, Pentax/Hitachi marketed the first curvilinear echoendoscope and ushered in the era of needle-based therapy
- In 1992, Vilmann et al. published the first EUS/FNA of a pancreas mass using a 4 cm 24 gauge needle

As With ERCP, EUS Evolved Rapidly From Diagnostic To Therapeutic Indications

Procedure	Authors	Year	Reference
PFC drainage	Grimm, Binmoeller, Sohendra	1992	GIE 38:170-1
CPN	Wiersema	1996	GIE 44:656-62
Fine needle injection	Chang, Nguyen, Thompson	2000	Cancer 88:1325-35
Transluminal BD drain	Giovannini, Moutardier, Delpero	2001	Endoscopy 33:898-0
Pancreatogastrostomy	Francois, Giovannini, Deviere	2002	GIE 56:128-33
Pancreatic rendezvous	Bataille, Deprez	2002	GIE 55:740-3
Pelvic abscess drain	Giovannini, Moutardier, Delpero	2003	Endoscopy 35:511-4
Biliary rendezvous	Mallery, Matlock, Freeman	2004	GIE 59:100-7
Panc cyst ablation	Gan, Thompson, Brugge	2005	GIE 61:746-52
Brachytherapy	Lah, Kuo, Chang, Nguyen	2005	GIE 62:805-8
Fiducial placement	Pishvaian, Collins, Haddad	2006	GIE 64:412-7
GB drainage	Baron, Topazian	2007	GIE 65:735-7
Vascular therapy	Romero-Castro, Pellicer-Bautista	2007	GIE 66:402-7

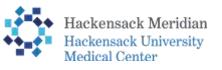

If We Could See It, Then We Could Puncture It

- In 1996, Maurits Wiersema published the first series of EUS-guided cholangiography to rescue failed ERCP
- Successful cholangiography was reported in 8 out of 11 patients with no early or late complications

Endosonography-guided cholangiopancreatography

Maurits J. Wiersema, MD, David Sandusky, RN, Roberta Carr, RN Lisa M. Wiersema, MD, William C. Erdel, MD, Paul K. Frederick, MD

Indianapolis, Indiana



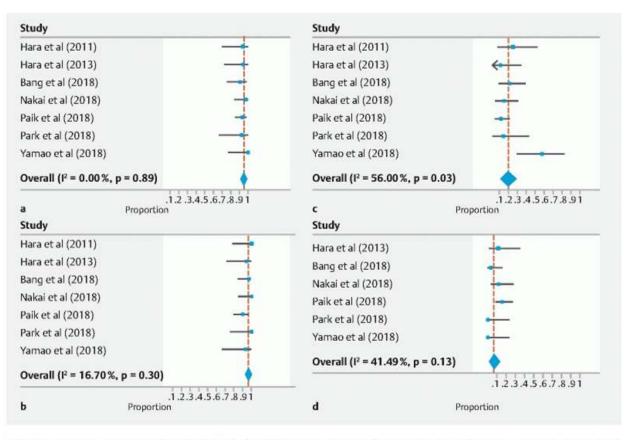
If We Could See It, Then We Could Puncture It

This was followed by Giovannini et al. in 2001, Mallery et al. in 2004, and Kahaleh et al in
 2005 all achieving biliary drainage by rendezvous technique

EUS-guided transhepatic cholangiography: report of 6 cases

Michel Kahaleh, MD, Pin Wang, MD, Vanessa M. Shami, MD, Jeffrey Tokar, MD, Paul Yeaton, MD Charlottesville, Virginia

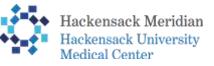
EUS-Guided Biliary Rendezvous For Failed ERCP



EUS-Guided ERCP (EUS-BD) Works

- Pooled technical success rate is 95% and rate of re-intervention is 7%
- Pooled adverse event rate is somewhat higher at 19%
 - Peritonitis
 - Cholangitis

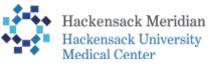
Kathorn K et al. Endosc Int Open 2019; 07(11): E1432-E1441


| Fig.2a Technical success rate for EUS-BD for treatment of distal malignant biliary obstruction. b Clinical success rate for EUS-BD for treatment of distal malignant biliary obstruction. c Serious adverse events for EUS-BD for treatment of distal malignant biliary obstruction d Rate of reintervention for EUS-BD for treatment of distal malignant biliary obstruction.

EUS-Guided ERCP (EUS-BD) Works

			•				
Author (year)	Study design	Total no subjects	Type of EUS-BD	Type of stent used	Technical success EUS versus ERCP rate, % (n=#)	Clinical success EUS versus ERCP rate, % (n=#)	Total Adverse Events EUS- BD versus ERCP rate, % (n=#)
Tonozuka ⁷² (2013)	Single Centre, Retrospective	11 (8 EUS-BD; 3 ERCP)	EUS-CDS EUS-HGS EUS-CAS	FCSEMS	100 (8/8) vs 100 (3/3)	100 (8/8) vs 100 (3/3)	37.5 (3/8) vs 0
Hamada ⁷⁸ (2014)	Multicentre, Retrospective	20 (7 EUS-BD; 13 ERCP)	EUS-CDS EUS-HGS	SEMS Plastic		-	14 (1/7) vs 7.6 (1/13)
Dhir ⁷⁷ (2015)	Multicentre, Retrospective	208 (104 EUS- BD;104 ERCP)	EUS-CDS EUS-AG	FCSEMS UCSEMS	93.3 (97/104) vs 94.2 (98/104)	89.4 (93/104) vs 91.3 (95/104)	8.7 (9/104) vs 8.7 (9/104)
Kawakubo ⁸⁰ (2016)	Single Centre, Retrospective	82 (26 EUS-BD; 56 ERCP)	EUS-CDS	PCSEMS		96.2 (25/26) vs 98.2 (55/56)	26.9 (7/26) vs 35.7 (20/56)
Bang ⁷⁵ (2018)	Single Centre, Prospective, RCT	67 (33 EUS-BD; 34 ERCP)	EUS-CDS	FCSEMS	90.9 (30/33) vs 94.1 (32/34)	97 (32/33) vs 91 (31/34)	21.2 (7/33) vs 14.7 (5/34)
Hamada ⁷⁹ (2018)	Multicentre, Retrospective	110 (20 EUS; 90 ERCP)	EUS-CDS EUS-HGS	FCSEMS PCSEMS UCSEMS		5 1	35% (7/20) vs 8.8% (8/90)
Paik ⁷³ (2018)	Multicentre, Prospective, RCT	125 (64 EUS- BD; 61 ERCP)	EUS-CDS EUS-HGS	Hybrid PCSEMS	93.8 (60/64) vs 90.2 (55/61)	90 (54/60) vs 94.5 (52/55)	10.9 (7/64) vs 39 (24/61)
Park ⁷⁴ (2018)	Single Centre, Prospective, RCT	28 (14 EUS-BD; 14 ERCP)	EUS-CDS	PCSEMS	92.8 (13/14) vs 100 (14/14)	92.8 (13/14) vs 100 (14/14)	0 vs 0
Yamao ⁸² (2018)	Multicentre, Retrospective	39 (14 EUS-BD; 25 ERCP)	EUS-CDS EUS-HGS	FCSEMS PCSEMS Plastic	100 (14/14) vs 56 (14/25)	92.9 (13/14) vs 52 (13/25)	57 (8/14) vs 32 (8/25)
Nakai ⁸¹ (2019)	Multicentre, Prospective	59 (34 EUS-BD; 25 ERCP)	EUS-CDS	FCSEMS PCSEMS	97 (33/34)	100 (34/34)	15 (5/34)

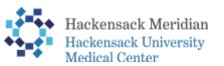
Canakis A, Baron TH BMJ Open Gastro 2020;7:e000428



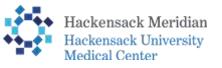
EUS-Guided ERCP (EUS-BD) Works

EUS-guided versus PTC drainage

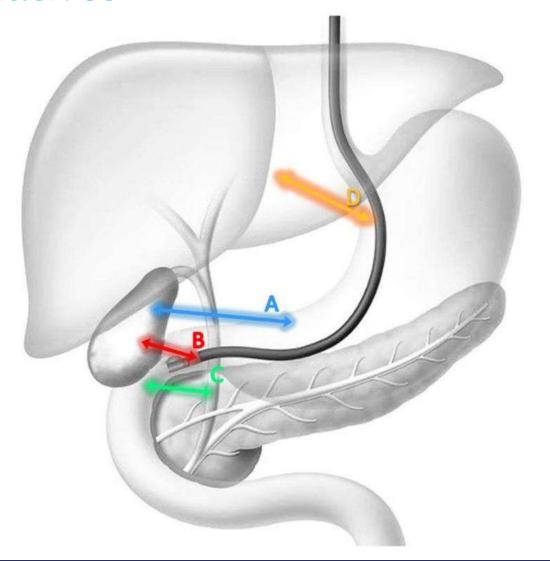
Variable	EGBD (n=22)	PTBD (n=51)	P value
Mean pre-EGBD bilirubin (mg/dL)	15.8 ± 11.3	14.5 ± 8.8	0.64
Mean post-EGBD bilirubin (mg/dL)	1.3 ± 0.9	2.3 ± 1.1	0.004
Technical success,%	86.4	100	0.007
Clinical success, %	86.4	92.2	0.4
Adverse events (index procedure)	4 (18.2)	20 (39.2)	0.08
Adverse events (index procedure & reinterventions)	18.2	70.6	<0.001
Need for reintervention during follow-up, %	15.7	80.4	< 0.001


Khashab et al. Dig Dig Sci 2015; 60(2): 557-65

The Problem With EUS-BD Is That It Still Involves ERCP

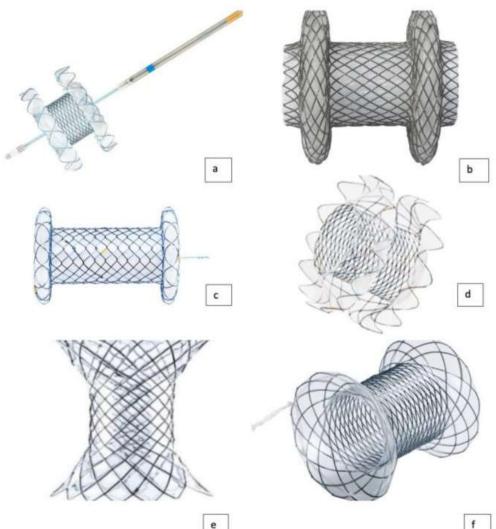

- At least similar complication rates to ERCP
- Suppose you can't even get to the ampulla?
 - Altered post-surgical anatomy
 - Malignant gastric or duodenal obstruction
- Are there any alternatives?

Surgically altered anatomy
Billroth-II gastrojejunostomy
Roux-en-Y gastric bypass
Hepaticojejunostomy
Gastric outlet obstruction
Duodenal invasion (types I and II)
High risk of post-ERCP pancreatitis



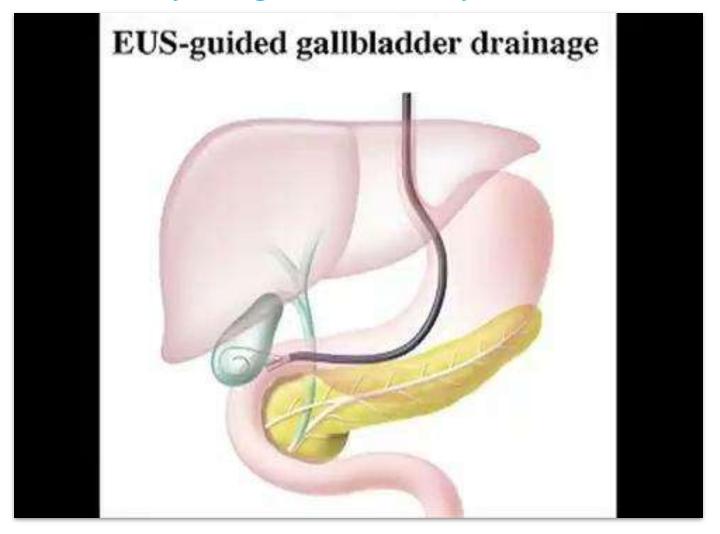
EUS-BD Alternatives

- EUS-guided choledochoduodenostomy (EUS-CD)
- EUS-guided hepaticogastrostomy (EUS-HG)
- EUS-guided cholecystogastrostomy
- These became much more feasible once covered metal stents became commercially available
 - Lumen Apposing Metal Stent (LAMS)


EUS-BD Alternatives

Clinically Available LAMS

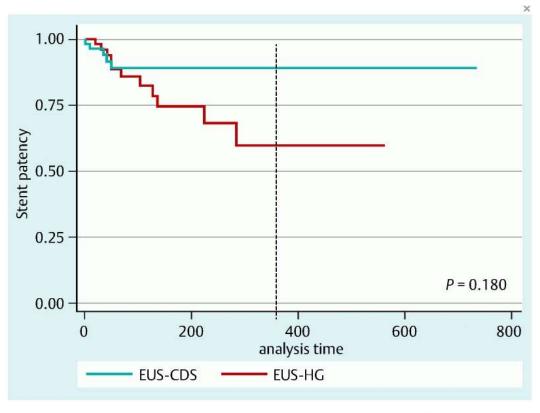
- LAMS were first described by Teoh and Binmoeller et al. in 2014 for gallbladder drainage
- They were rapidly used to connect other structures to the GI tract
 - o Bile ducts
 - o Collections
 - Other parts of the bowel



EUS-Guided Choledochoduodenostomy

EUS-Guided Cholecystogastrostomy

EUS-Guided Hepaticogastrostomy



Which Alternative Procedure Is Better? EUS-CD vs EUS-HG

 EUS-CD associated with shorter hospital stay, improved stent patency, and fewer procedurerelated adverse events

Khasab M et al. Endosc Int Open 2016; 04(02): E175-E181

| Fig.2 Kaplan-Meier plot estimates of the stent patency duration after EUS-CDS and EUS-HG. Dashed line represents probability of stent patency at 1 year: EUS-CDS 0.98 (96%CI: 0.76–0.96) vs EUS-HG 0.60 (95%CI: 0.35–0.78). Stent patency duration was not significantly different via log-rank test (P=0.228).

Which Alternative Procedure Is Better? EUS-CD vs EUS-HG

- Adverse events were associated with the use of
 - Plastic stents
 - Non-coaxial cautery

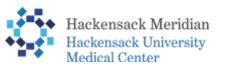
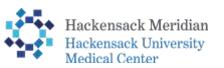

Khasab M et al. Endosc Int Open 2016; 04(02): E175-E181

Table6

Multivariable analysis of predictors of adverse events after EUS-BD adjusting for EUS-BD route.

	Multivariable analysis	
	Odds Ratio (95%CI)	P value
Hepatogastrostomy	1.63 (0.56-4.74)	0.374
Plastic stenting	4.95 (1.41-17.38)	0.013
Non-coaxial electrocautery	3.95 (1.16-13.40)	0.027

EUS-BD, endoscopic ultrasound-guided biliary drainage



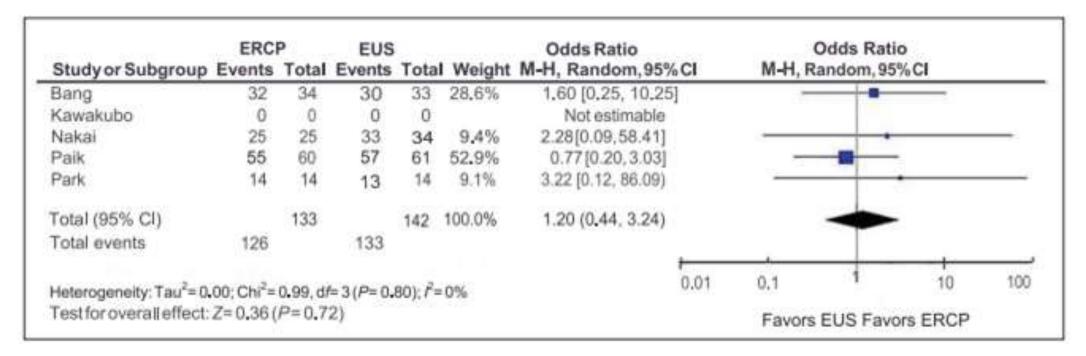
Which Alternative Procedure Is Better? EUS-CD vs EUS-HG

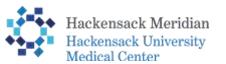
- Two other large reviews showed no difference in technical success
 - o 92% in both groups
- They however did show a trend towards longer stent patency in EUS-CD patients
- Tyberg et al's metanalysis showed an increased complication rate of EUS-CD
 - o 25/87 patients in the EUS-HG required stent revision (long-term success 71%)

Uemura RS et al. J Clin Gastroenterol 2018 Feb;52(2):123-130

Tyberg A et al. Endosc Ultrasound 2022 Jan-Feb;11(1):38-43

Primary EUS Drainage


- Most publications to date propose EUS-guided drainage only after failed ERCP (as an alternative to percutaneous biliary drainage)
- However, how about never even considering ERCP in the first place?


Primary EUS Drainage

One metanalysis showed comparable technical and clinical success with primary EUS-BD

Kakked G et al.

Endoscopic Ultrasound 9(5); Sept 2020

Primary EUS Drainage

- It also showed far less adverse events, especially pancreatitis, in the EUS-only group
- The rate of pancreatitis in the ERCP group was 9.5%,
 whereas in the EUS group it was 0%

Kakked G et al.

Endoscopic Ultrasound 9(5); Sept 2020

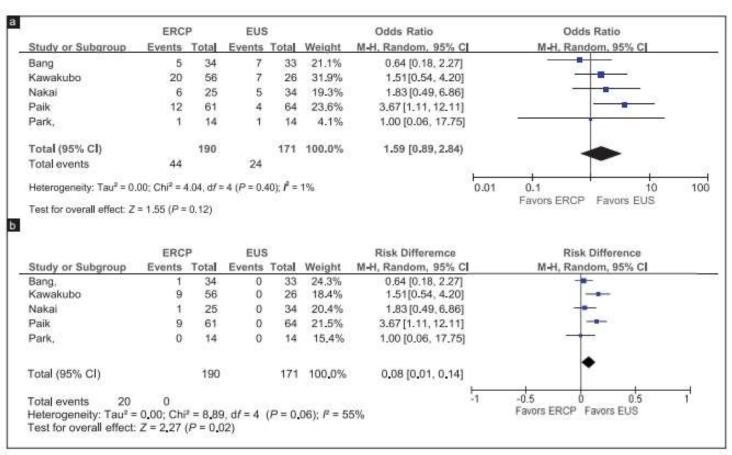
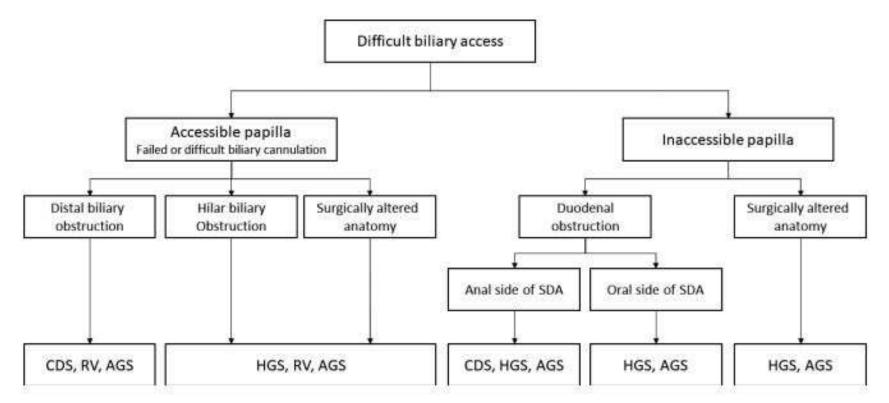
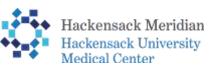
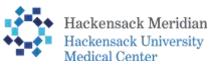


Figure 4. Adverse events. (a) Overall adverse events. (b) Procedure-related pancreatitis

So....Can We Come Up With An Algorithm?

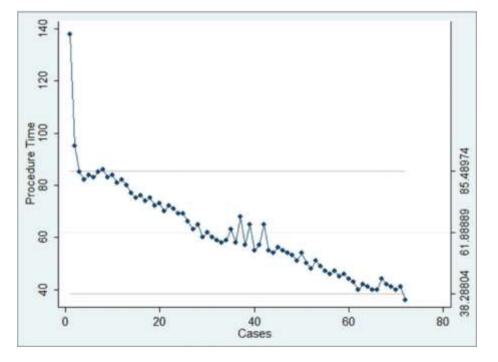




Fig. 3 Flowchart of selection of various EUS-BD procedures. EUS endoscopic ultrasound, EUS-AGS EUS-guided antegrade stenting, EUS-CDS EUS-guided choledochoduodenostomy, EUS-HGS EUS-guided hepaticogastrostomy, EUS-RV EUS-guided rendezvous technique, SDA supraduodenal angle

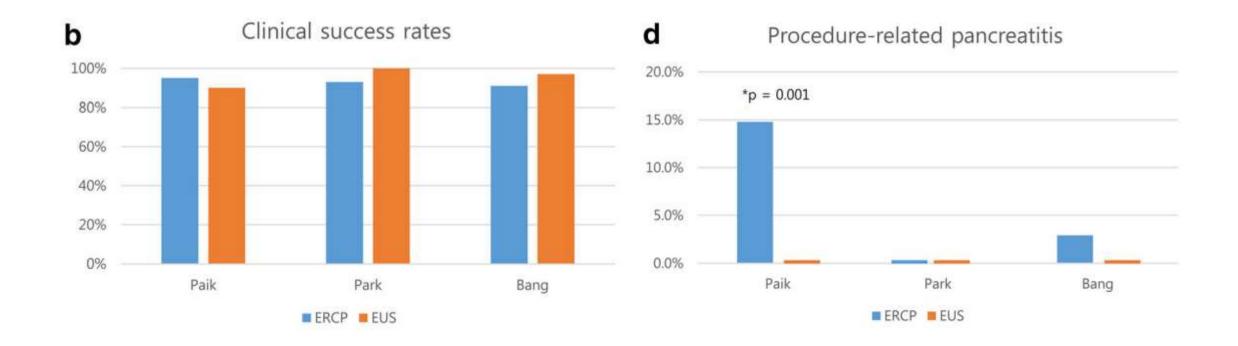
Paik WH Curr Treat Options Gastro (2020) 18:188–199

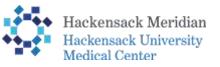
Can EUS-Only Approaches Truly Replace ERCP?

Pro	Con
Comparable efficacy to ERCP in expert hands	Steep learning curve
Longer stent patency	No dedicated devices for this
Less ERCP-type complications	Stent-related issues not fully resolved
Access to the bile duct regardless of anatomy	Not fully applicable to more benign disease



How Steep Is That Learning Curve By The Way


- A few studies have documented the steep learning curve of this highly technical skill
- It has been shown that skill starts to improve in a linear fashion after the first 32 cases and


mastery is achieved after the first 100 cases

Tyberg A et al. Endoscopic Ultrasound 9(6); Nov 2020

Can EUS Really Replace ERCP For Malignant Biliary Obstruction?

Can EUS Really Replace ERCP For Malignant Biliary

Obstruction?

