

2023 STROKE AND NCC SYMPOSIUM

All Acutely Symptomatic Extracranial Carotid Occlusions SHOULD NOT Be Emergently Opened

Igor Rybinnik, M.D

Rutgers Robert Wood Johnson Medical School Department of Neurology

DISCLOSURES

No relevant financial conflicts to disclose Some cases were modified slightly for teaching purposes Focus on isolated extracranial ICA occlusion, *not* tandem occlusions

62M

TIME FROM LAST KNOWN WELL

Dysarthria, left facial droop, left arm weakness, mild neglect

NIHSS SCORE

5

occluded vessel Right cervical ICA

INITIAL CTP 0.0

Tmax>6.0s volume: 152 ml

Mismatch volume: 141 ml Mismatch ratio: 13.8

CBF<30% volume: 11 ml

69 HOUR FOLLOW-UP CTP AFTER BP AUGMENTATION

Improved clinically with blood pressure augmentation Penumbra volume improved

NIHSS score 2 on discharge

INITIAL CTP

Tmax>10.0s volume: 21 ml Tmax>8.0s volume: 51 ml Tmax>6.0s volume: 152 ml Tmax>4.0s volume: 314 ml Hypoperfusion Index (Tmax>10s/Tmax>6s): 0.1

Hypoperfusion Index (Tmax>10s/Tmax>6s): 0.1

HYPOPERFUSION INDEX

IS A PREDICTOR OF POOR COLLATERAL FLOW AND INFARCT GROWTH

MacLellan A, et al. *JSCVD* 2022;31(1):106-208 Normani AZ, et al. *Neurology* 2021;97(21):e2079-87

Ipsilateral ischemic

stroke/death

stroke and any operative

CEA VERSUS MEDICAL THERAPY POOLED ANALYSIS OF ECST, NASCET, VA TRIALS

Rothwell J, Carotid Endarterectomy Trialists' Collaboration, et al. Lancet. 2003;361(9352):107

70-99% STENOSIS EXCLUDING NEAR OCCLUSION

NEAR OCCLUSION

>99%

Revascularization of cervical ICA near-occlusion/occlusion Benefit unknown

Revascularization of cervical ICA near-occlusion/occlusion Ineffective

ICARO-3 STUDY: IVT OR ENDOVASCULAR FOR AIS ASSOCIATED WITH CERVICAL CAROTID ARTERY OCCLUSION WITHIN 6-HOUR WINDOW

Paciaroni M, et al. J Neurol 2015;262:459-468

CHARACTERISTIC	eICA OCCLUSION ENDOVASCULAR ± IVT, IAT (6H) (n=324)	eICA OCCLUSION IVT ONLY (4.5H) (n=324)
Median Age	65 (54-73)	66 (54-74)
Male sex	63 % (205)	63% (205)
Median NIHSS score	16 (11-20)	16 (12-20)
Cause of carotid occlusion		
Atherosclerosis	52% (168)	55% (178)
Dissection	11% (36)	14% (45)
Tandem occlusions	13% (43)	14% (22)

ICARO-3 STUDY: IVT OR ENDOVASCULAR FOR AIS ASSOCIATED WITH CERVICAL CAROTID ARTERY OCCLUSION WITHIN 6-HOUR WINDOW

Paciaroni M, et al. J Neurol 2015;262:459-468

OUTCOME	eICA OCCLUSION ENDOVASCULAR ± IVT, IAT (n=324)	eICA OCCLUSION IVT ONLY (n=324)
TICI 2a-3	69% (182/265)	
Safety endpoints within 90 days		
Any ICH	37% (120) OR 2.82 (95% CI, 1.95-4.06)	17% (56)
Parenchymal Hematoma	15% (50) <i>p</i> =0.0001	4% (14)
Death	18% (57)	23% (75) OR 0.61 (95% CI, 0.4-0.93)
Favorable outcome mRS 0-2 at 90 days	32% (105)	27% (89) OR 1.27 (95% CI, 0.9-1.77)

■mRS0 ■mRS1 ■mRS2 ■mRS3 ■mRS4 ■mRS5 ■mRS6

Ordinal analysis

adjusted for age, sex, NIHSS, presence of diabetes mellitus and atrial fibrillation

OR 1.15 95% CI, 0.86-1.54 p= 0.33

Early revascularization of cervical ICA near-occlusion/occlusion Probably not benef

STROKE ONSET

J Neurol 2015;262:459-468

24h 48h 4d 7d

Late revascularization of cervical ICA near-occlusion/occlusion Ineffective

> l J, et al. .003;361(9352):107

> > 6mo

1у

LET'S GIVE OUR INTERVENTIONALISTS THE BENEFIT OF THE DOUBT

Successful reperfusion rate too low TICI 2a-3 69%	Severe sICH incidence too highParenchymal Hematoma15%6%	Non-uniform endovascular approach, use of IA TPA may not reflect current practice	Stu und (ne pat gro
---	--	--	---------------------------------

LET'S GIVE OUR INTERVENTIONALISTS THE BENEFIT OF THE DOUBT

a	t	e
	_	-

Severe sICH incidence too high

Parenchymal Hematoma Fatal ICH 15% 6% Non-uniform endovascular approach, use of IA TPA may not reflect current practice Study was underpowered (needed 1300 patients per group)

Rybinnik is so old. I finished my fellowship years after ICARO-3. And NASCET? Really!? How about some modern

data?

MORE RECENT EVIDENCE: RETROSPECTIVE COHORTS

Outcome and Treatment Effects in Stroke Associated with Acute Cervical ICA Occlusion

Gliem M, et al. PLoS ONE 2017;12(1):e0170247 Angioplasty, stenting for symptomatic extracranial non-tandem internal carotid artery occlusion n = 107

Jadhav A, et al. J NeuroIntervent Surg 2018;10:1155–1160

Endovascular Reperfusion for Acute Isolated Cervical Carotid Occlusions n = 9

de Castro-Afonso LH, et al. Intervent Neurol 2019;8:27–37 Acute Stroke Treatment by Surgical Recanalization of Extracranial ICA Occlusion

Schubert J, et al. Vasc and Endovasc Surg 2019;53(1) 21-27

MORE RECENT EVIDENCE: RETROSPECTIVE COHORTS

Angioplasty, stenting for symptomatic extracranial non-tandem internal carotid artery occlusion n = 107

Jadhav A, et al. J NeuroIntervent Surg 2018;10:1155–1160

Angioplasty/stenting is safe and feasible **Occlusions were mostly atherosclerotic** Median NIHSS > 6-8 **Excellent** recanalization Increased rate of distal embolization Trend towards better outcomes **Treated with DAPT**

MORE RECENT EVIDENCE: RETROSPECTIVE COHORT WITH CONTROL GROUP

Waters M, et al. Stroke Vasc Interv Neurol. 2022;2:e000174

CHARACTERISTIC	eICA OCCLUSION ENDOVASCULAR ± IVT (24H) (n=40)	eICA OCCLUSION MEDICAL THERAPY ONLY (n=33)
Age	68 (60-77)	73 (60-82)
Baseline NIHSS score	13 (7-16)	3 (1-8) <i>p</i> =<0.0001
Age in NIHSS \geq 6 cohort	69 (60-78) _{n=33}	83 (76-88) n=11, <i>p</i> =0.009
Cause of carotid occlusion		
Atherosclerosis	78% (31)	85% (28)
Dissection	20% (8)	15% (5)
Received IV thrombolysis	50% (20) <i>ρ</i> =0.002	15% (5)
Treated with DAPT for at least 30 days	All	24% (8)

MORE RECENT EVIDENCE: RETROSPECTIVE COHORT WITH CONTROL GROUP

Waters M, et al. Stroke Vasc Interv Neurol. 2022;2:e000174

ENDOVASCULAR ± IVT (n=40)	MEDICAL THERAPY ONLY (n=33)
85% (34)	NA
	NA
7.5% (3)	
5% (2)	
5% (2)	O p=0.43
73% (29) OR 1.7 (95% CI, 0.64-4.6)	61% (20)
66% (22/33) OR 9.0 (95% CI, 1.65-49.0)	18% (2/11)
	ENDOVASCULAR ± IVT (n=40) 85% (34) 7.5% (3) 5% (2) 5% (2) 5% (2) 73% (29) OR 1.7 (95% CI, 0.64-4.6) 66% (22/33) OR 9.0 (95% CI, 1.65-49.0)

Early revascularization of cervical ICA near-occlusion/occlusion

Safe, beneficial?

Late revascularization of cervical ICA near-occlusion/occlusion
Ineffective

Jadha Surg	av A, et al. J No 2018;10:115	euroIntervent 5–1160			Rothwell J, <i>et al.</i> Lancet 2003;361(9352):107			
Wate Neuro	ers M, et al. Str ol. 2022;2:e00	roke Vasc Interv 00174					ancet 2003;361(9352):107	
24h	48 h	4d	7d	2wks	1 mo	2mo	6mo	1 y

AMERICAN STROKE ASSOCIATION 2019 GUIDELINES FOR THE MANAGEMENT OF ACUTE ISCHEMIC STROKE

Powers J, et al. Stroke 2019;50:e344-e418.

The usefulness of emergent or urgent carotid endarterectomy (CEA)/carotid		
small infarct core with large territory at risk (eg, penumbra), compromised l inadequate flow from a critical carotid stenosis or occlusion, or in the case acute neurological deficit after CEA, in which acute thrombosis of the surgio site is suspected, is not well established.	s a by of IIb cal	B-NR
In patients with <mark>unstable neurological status</mark> (eg, stroke-in-evolution), the efficacy of emergency or urgent CEA /carotid angioplasty and stenting is no well established.	llb	B-NR

ACUTELY SYMPTOMATIC EXTRACRANIAL CAROTID CRITICAL STENOSES SHOULD OT BEEMERGENTLY OPENED

Randomized-controlled evidence is necessary to define the **optimal patients** that would benefit from intervention.

SOME ACUTELY SYMPT EXTRACRANIAL CRITICAL ST SHOULD BEEMERGENTLY OPENED

ACUTELY SYMPTOMATIC EICA OCCLUSIONS THAT MAY BENEFIT FROM EMERGENT REVASCULARIZATION

AGE <80

NIHSS SCORE

Athero.

High HIR

DAPT

Thank you

