Innovations in pediatric cardiac surgery

David Kalfa, MD PhD

Associate Professor of Surgery, tenure track Section of Pediatric and Congenital Cardiac Surgery Columbia University Medical Center/NewYork-Presbyterian Site Director, Pediatric and Congenital Cardiac Surgery Weill-Cornell Medical Center/NewYork-Presbyterian Director, Pediatric Heart Valve Center

Financial Disclosure

I have no relevant financial disclosures

1. Living heart valve transplant

2. Robotically assisted pediatric cardiac surgery

1. Living heart valve transplant

2. Robotically assisted pediatric cardiac surgery

History – the "homovital homograft"

"Homovital" homografts were pioneered in the second half of the 20th century

These fresh allografts were wet-stored in electrolyte solution or nutrient medium at 4C and re-implanted at the first opportunity

Homovital homografts demonstrated excellent durability, with minimal stenosis

Yacoub et al., J Thoracic Cardiovasc Surg, 1995

Valve-related late complications (7 years follow up)

Complication	Number 31			
Valve regurgitation				
Trivial 17				
Mild 13				
Moderate 1				
Cerebral embolism (minor)	3			
Heart block (tenth month)	1			
Cusp rupture (forty-sixth month)	1			
Endocarditis (miliary tuberculosis)	1			
Valve stenosis	0			
Leaflet calcification	0			

Khanna, Ross, Monro, Thorax, 1981

Cryopreserved homograft" – Risk factors and failure modes for pediatric patients receiving a valve replacement

Common risk factors for valve dysfunction and failure:

- Smaller valve/conduit size
- Younger age at time of surgery
- Complexity of congenital heart disease

Common failure modes:

- Calcification
- Non-calcific structural valve degradation

Younger patients receiving smaller grafts are at highest risk of reintervention or reoperation following a tissue-based valve replacement

Freedom from Pulmonary Valve

Freedom from Pulmonary Valve

Partial heart transplant or Living Allogenic Heart Valve: A homograft capable of growth and repair?

Recent work highlights "partial heart transplants" as a means of offering living valvular homograft

homograft rejection

INVITED EXPERT OPINION

Living allogenic heart valve transplantation: Relative advantages and unanswered questions

David Kalfa, MD, PhD,^a Taufiek K. Rajab, MD,^b Elizabeth Cordoves, BA,^c Sitaram Emani, MD,^d Emile Bacha, MD,^a James Jaggers, MD,^e Andrew Goldstone, MD, PhD,^a Pirooz Eghtesady, MD, PhD,^f and Joseph Turek, MD, PhD, MBA^g

Key advantage: the living valvular homograft can grow and self-repair with the patient
Key limitations: donor availability, limited ex vivo viability, immunogenicity

May 2023 World First Domino infant partial heart transplant

Advantages of domino heart valve transplantation

Collecting valvular tissue from transplant patients improves the spatiotemporal availability of HVT

Minimizes the cold ischemic period to the time required for inter-operative room transport and back-table allograft preparation

Introduces unique advantages inherent to a known valve donor

Minimizes variables in a currently unregulated space

Our Experience in Living Allogenic Valve Transplantation: A Case Series of 6 Patients

Patient 1

2-month-old F prenatally diagnosed with **TA Type 1** and left PA stenosis

Previous Surgeries: TA repair with RVOT reconstruction, left PA plasty on DOL 4 (02/21/23)

Clinical status (moderate-severe truncal valve insufficiency) discussed at multidisciplinary conference, at which point intervention was recommended

Underwent **ABO-incompatible domino aortic and pulmonary valve and root transplantation on 05/10/23** (CBP: 275 mins, XCT: 220 mins) LOS: 15 days

Our Experience in Domino Living Allogenic Valve Transplantation: A Case Series of 6 Patients

Patient 1

2-month-old F prenatally diagnosed with **TA Type 1** and left PA stenosis

Previous Surgeries: TA repair with RVOT reconstruction, left PA plasty on DOL 4 (02/21/23)

Clinical status (moderate-severe truncal valve insufficiency) discussed at multidisciplinary conference, at which point intervention was recommended

Underwent **ABO-incompatible domino aortic and pulmonary valve and root transplantation on 05/10/23** (CBP: 275 mins, XCT: 220 mins) LOS: 15 days

Patient 2

3-year-old M with congenital **bicuspid valve**, noted on echo to have severe AV regurgitation and a moderate-severely dilated left ventricle

Previous Surgeries: Balloon valvuloplasty at 3 months old (02/21/20)

Underwent **domino aortic valve/root transplantation on 07/11/23**, with aortic annuloplasty to prevent excessive root dilation (CPB: 131 min, XCT: 110) LOS: 11 days

Early clinical outcomes support the growth capacity of transplanted valves

Early clinical outcomes demonstrate the preserved function of transplanted valves

Patient 1

Patient 2

Transvalvular pressure gradients have remained within normal/mild levels throughout follow-up

HVT = heart valve transplant AV = aortic valve STJ = sinotubular junction

D Kalfa et al. JACC submission

Early clinical outcomes demonstrate the preserved function of transplanted valves

			Patient 1				Patient 2		
Time <u>Post-</u> <u>Domino</u> <u>HVT</u>	AV Regurg	LV Dys- function	LV Dilation	PV Regurg	RV Dys- function	AV Regurg	LV Dys- function	LV Dilation	
1-2 Days	Trivial	Moderate	Moderate	Trivial	Mild	Trivial	Moderate	Moderate	
1-2 Weeks	Trivial	Mild	Mild	Trivial	Mild	Trivial	None	None	
1-2 Months	Trivial	Mild	None	Trivial	Mild	Trivial	None	None	
2-3 Months	Trivial	None	None	Trivial	Mild	Mild	None	None	
3-4 Months	Trivial	None	Mild	Trivial	Mild	Mild	None	None	
4-5 Months	None	None	Mild	Trivial	Mild	Mild	None	None	
5-6 Months	None	None	Mild	Trivial	Mild	Mild	None	None	
6-7 Months	None	None	Mild	Trivial	Mild	Mild	None	None	
7-8 Months	None	None	Mild	Trivial	Mild	Mild	None	None	
8-9 Months	None	None	Mild	Trivial	Mild	Mild-Mod	None	None	
9-10 Months	None	None	Mild	Trivial	Mild	Mild-Mod	None	None	HVT = heart valve transplant AV = aortic valve
10-11 Months	None	None	Mild	Trivial	Mild	Mild-Mod	None	None	STJ = sinotubular junction
11-12 Months	None	None	None	Trivial	None				D Kalfa et al. JACC submission
12-13 Months	None	None	None	Trivial	None				16

Patients #3- #6

	Age	diagnosis	Indication	Valve transplanted	Valve origin	Last postop follow-up	regurgitation at last follow	Gradient at last follow-up	growth
Patient 3	2у	Truncus s/p repair	Truncal regurgitation and RV –PA conduit failure	Aortic and pulmonary	Domino	4 months	Trivial AI, mild PI	No AS, peak radient PV 22mmHg	AoV $14\text{mm} \rightarrow$ 18mm (z) score $3 \rightarrow 1.5$
Patient 4	3у	Supra and valvar AS post repair	AS/AI	aortic	Domino split	2 months	No AI	No AS	AoV 1.3 →1.4
Patient 5	18 months	Truncus s/p repair	RV-PA conduit failure	pulmonary	Domino split	2 months	Trivial PI	No PS	?
Patient 6	8 day	Truncus s/p bilateral PA band	Truncal regurgitation	Aortic and pulmonary	Non- domino	1 month	Trivial AI/PI	Mild AS, mild to moderate subPS	?

Heart valve transplant recipient immunosuppression

Patients are discharged on triple-therapy immunosuppression, with the **overall goal of transitioning to a Tacrolimus-only regimen**

Important "**exit strategy**" of eliminating immunosuppression if significant complications arise

Without immunosuppression, predict outcomes no worse than standard cadaveric homograft

Postoperative Immunosuppression

Detecting Allograft Rejection

- Donor Fraction Cell-free DNA
 - Heart transplant Threshold is <0.14%
 - Both patients <0.08% and decreasing over time
- Donor Specific Antibodies
 - Developed at 2 months post

COLUMBIA UNIVERSITY IRVING MEDICAL CENTE

- ?association with decrease in steroids?
- Persistent stable antibody titers
- Non-invasive methods
 - MRI
 - PET

🖆 Columbia

Living allogenic valve replacements demonstrate preserved **function** and **growth** with the recipient at short-term follow-up

first-ever infant domino heart valve transplant

Current indications

Truncal valve and aortic valve +/- pulmonary valve

Ross not feasible Bad indication for a Ross: PI, RHD, severe AI, severe aortic root dilation Neonatal Ross Interest of the parents/cardiologist

The younger, the higher the benefit is for growth \rightarrow up to 8-10 yo?

Self repair and remodeling (living valve) at all ages

Isolated RV PA conduit replacement in young children

Mitral valve replacement if not (re)-repairable (avoid coumadin / reop / survival?)

n=4 aortic valve, n=2 mitral valve

Multidisciplinary discussion and assessment: Surgeon/ HF/ cardiology

Criteria for "ranking" age/size match (echo recipient/donor) clinical status timing of listing

Multidisciplinary counseling of parent

Current clinical effort

- 1. Multicentric study
 - 1. N=19 (10 Duke, 6 Columbia, 1 Boston, 1 Austin, 1 south Carolina)
 - 2. DUA and IRB -> AATS abstract
- 2. Registry:
 - 1. US-based
 - 2. Invited expert opinion paper for JTCVS
 - 3. Columbia (Sherlanski) and Cornell (Gaudino) statistical and registry effort

Evaluating Safety and Outcomes of Living Allogenic Heart Valve Transplantation: The Case for a Multicenter Prospective Clinical Registry

Elizabeth M. Cordoves, BA^{1,*}, V. Reed LaSala, MD^{1,*}, Alexander Gregg, MD², Mario Gaudino, MD, PhD², Michael Shelanski, MD, PhD^{3,4}, Marc Richmond, MD⁵, Emile Bacha, MD¹, David M. Kalfa, MD, PhD¹

3. Regulatory considerations

COLUMBIA UNIVERSITY

碰 Columbia

1. Organ vs tissue regulation

Why partial heart transplantation could be regulated as organ transplantation. Glazier AK, Dafflisio G, Rajab TK, **Kalfa D**, Jaggers J, Emani S, Greenwald MA.

Am J Transplant. 2024 Jun 13:S1600-6135(24)00372-1. doi: 10.1016/j.ajt.2024.06.003. Online ahead of print.

Questions about indications and listing?

Translational research:

Long term storage, preservation and rehabilitation of living allogenic valve

Kalfa Lab

The next-generation homograft: A living allogenic heart valve replacement (LAV)

Collection from a donor Dissection, antibiotic treatment

2. Storage, Preservation, and Rehabilitation in a Bioreactor

3. Living Biobank for Offthe-Shelf Availability

Heart valve allografts can be kept viable in long-term storage, providing an "off-theshelf" source of living valve replacements capable of growth and repair

Pulmonary allograft collection and viability testing

Porcine sample collection process

Living valvular tissue can be preserved for up to 2 weeks *ex vivo*

A bioreactor for physiologically-relevant allograft storage

Valve open/close cycles as-imaged through the viewing window

Valve viewing window

Valve held in place here

 Construct is filled with valve preservation solution

The prototyped bioreactor can induce valvular open/close cycles in a uniquely pumpless format

A high-throughput rotating motor for culturing multiple valves simultaneously was created

Updated analysis of valvular immunogenicity

Groups of Interest

- 1. Tissue-only (negative control)
- 2. Tissue + PBMCs
- 3. Tissue + PBMCs with Phytohemagglutinin
- 4. PBMCs-only (negative control)

Readouts Alamar Blue LDH

In vivo evaluations of the viability, growth-capacity and immune response to valvular allografts

Experimental Model:

Orthotopic transplantation of a pulmonary homograft in a 3-month-old piglet

2 month follow up

Readouts of Interest:

Valve growth, function over time Valvular microarchitecture, cell phenotype Immunogenicity

Experiments Performed:

N=2 Fresh Heart Valve Transplants

N=1 Cold-Stored Valve (4 weeks in PBS at 4°C)

1. Harvest valvular graft and implant in piglet

2. Observe valvular growth/function over time

3. Valve explantation and analysis

Pulmonary homografts were freshly isolated in an adjacent operating room and reimplanted orthotopically in the recipient

33

Term echo for the second freshly-transplanted valve demonstrated trivial/physiologic regurgitation

Echos were evaluated by the cardiologist onsite at Skirball

Term echo for the cold-stored valve demonstrated severe regurgitation

Echos were evaluated by the cardiologist onsite at Skirball

Grossly, explanted fresh pulmonary valve transplants demonstrated normal morphology and leaflet geometry

JTCVS

INVITED EXPERT OPINION

Commentary

Storage, preservation, and rehabilitation of living heart valves to treat congenital heart disease

Elizabeth M. Cordoves,^{1,2} Giovanni Ferrari,^{2,3} Emmanuel Zorn,⁴ Emile Bacha,⁵ Gordana Vunjak-Novakovic,^{2,6,*} and David M. Kalfa^{5,*}

Adaptation of cold preservation techniques to partial heart transplant

V. Reed LaSala, MD, Elizabeth M. Cordoves, BA, and David M. Kalfa, MD, PhD

Joint Award - Department of Surgery Innovation Fund and Columbia Technology Ventures (CTV) / CUIMC Validation Fund (\$100,000)

1F30HL174098 - 01A1, Ruth L. Kirschstein National Research Service Award Individual Fellowship for Students at Institutions with NIH-Funded Institutional Predoctoral Dual-Degree Training Programs National Heart, Lung and Blood Institute (NHLBI)

1F31HL178343-01, Ruth L. Kirschstein National Research Service Award (NRSA) Individual Predoctoral Fellowship to Promote Diversity in Health-Related Research

National Heart, Lung and Blood Institute (NHLBI)

R01 submission – to be reviewed in two weeks

AHA Established Investigator award – to be reviewed in 2 months

Current indications

Truncal valve and aortic valve +/- pulmonary valve

Ross not feasible Bad indication for a Ross: PI, RHD, severe AI, severe aortic root dilation Interest of the parents/cardiologist

The younger, the higher the benefit is for growth \rightarrow up to 8 yo?

Self repair and remodeling (living valve) at all ages

Isolated RV PA conduit replacement in young children

Mitral valve replacement if not (re)-repairable (avoid coumadin and reop+++)

1. Living heart valve transplant

2. Robotically assisted pediatric cardiac surgery

Kalfa D, Nature cardiology review

Our series

11 ACHD

Ostium secundum ASD

Sinus venosus ASD /PAPVR

Scimitar

MV repair

6 children

Ostium secundum ASD PAPVR

double aortic arch

No death

No complications

Indications in congenital

- ASD OS and SV
- PAPVR
- Scimitar
- TVr
- Simple MVr
- Cor triatriatum
- Vascular ring
- Children >25kg
- Youngest 6 yo so far: youngest robotic open-heart surgery worldwide June 2024

